DSA Reference

March 27, 2009

Contents

1 Introduction 10
1.1 Target Audience i i i ittt 10
1.2 Overview e e e e e e e e e e e e e e 11

2 Basic concepts 12
2.1 Instances e e e e e e e 12
2.2 States e e e e e e e 12
2.3 MeSSaZeS e e e e e e e e e e e e e e 13

2.3.1 MessageType i i i e e e e e 13
2.4 MEIOIY . . . v v v v v i it e e e e e e e e e e e e e e e e 13
2.4.1 Parameters e e e e e e e e e 13
242 Stack e e e e 14
2.4.3 StatiCc Array e e e e e e e e e e e 14
2.4.4 Global Variables 000 14
2.4.5 Temporary Variables, 14
2.5 Cells e e e e e e e e e 15
2.6 Enumerations and Bit Encoding0 0L 15
2.6.1 CellLocations it 15
2.6.2 Locations e e e 16
2.6.3 Manhattan Distance 0000 17
2.6.4 Facing and Positions 0000 .. 17

CONTENTS 2

2.6.4.1 PositionMasks 0000 18

2.6.5 CharacterRelated 18
2.6.5.1 Character Numbers 18

2.6.5.2 Character Fingerprint 18

2.6.5.3 SKills e e e 19

2.6.5.4 Spells e e e e e e 19

2.6.5.5 Inventory Slots Lo 20

2.6.6 Object e e e e e e 20
2.6.6.1 MonsterTypes 21

2.6.6.2 TtemTypes e 22

2.6.6.3 FooType o o o i i i i 24

2.6.7 Sounds e e e e e e e e e e e e e e e e e 26

3 Filters 27
3.1 SpellFilters e e 27
3.2 Skill Adjust Filter o 29
3.3 Party Attack Filter e 30
3.4 Feeding Filter o e 33
3.5 Character Death Filter 35
3.6 Viewing Filter e 36
3.7 Cursor Filter e e e e e 37
3.8 Attack Option Name Filter 39
3.9 EquipFilter e e e e e 40
3.10Party Move Filter e 41
3.11Monster Attack Filter 42
3.12Monster Movement Filter 45
3.13Monster Delete Filter 47
3.14Sound Filter e e e e e e e e 48
3.15Missile Encounter Filter., 48

3.16Indirect Actions e e e e e e e 49

CONTENTS 3
4 Instruction Reference 51
4.1 Terminology e e e e e e e e e 51
4.2 EXPressions o i it e e e e e e e e e e e e e e e e e 51
4.3 FOO e e e e e e e e e e e 52
4.4 Interpreting Instruction Descriptions 52
4.5 General e e e e e e e e e e e e e 52
4.5.1 NOP e e e e e 52
4.5.2 Load e e e 52
4.5.3 Load DSALocation i 53
4.54 SetState e e e e e 53
4.5.5 Random Number 53
456 Read Time o o i i i i it e 54
4.5.7 Global Information Get 54
4.5.8 Override L e e e e e e e e e 54
4.59 DSAQUErY i e e e e e e e 55

4.6 Message Passing L L e 55
4.6.1 Standard Messageo e e 56
4.6.2 Standard Message (Indirect), 56
4.6.3 MESSAZE . .« v v v v e 56

4.7 Stack Manipulation L o o 57
4.7.1 DIOD . . v o i i e e e e e e e e e e e e e e e e e e 57
4.7.2 DIrop2 o i i e e e e e e e e e e e e e e e 57
4.7.3 SWaD . . .« o o e e e e e e e e e e e e e 57
4.7.4 OVET . . . o i i i it e e e e e e e e e e e e e e e 57
4.7.5 Duplicate e e e 58
4.7.6 Duplicate 2 e e e 58
4.7.7 Pick e e e 58
4.7.8 Pick2 58

CONTENTS 4

4.7.9 PoKe e e e e e e e 58
4.7.10Roll e e e e 59
4.7.11U0nroll e e e e 59
4.7.12Rotate e e e e e e 59

4. 7.13Unrotate L L e e e e e e e 60

4.8 AITAY ACCESS . . v v v v v it e e e e e e e e e e e e e e e e 60
4.8.1 Array Get L e e 60
4.8.2 Array Set e e e e 60

4.9 Parameter ACCESSt i i it e e e e e e e e e e e e e 60
4.9.1 Parameter Set. L oo e 61
4.9.2 Parameter Get oL e 61
4.10Global Variables e e e 61
4.10.1Global Get e e e 61
4.10.2Global Set e e 61
4.11Temporary Variables oo o 62
4.11.1Variable Get e e e e e e 62
4.11.2Variable Set e 62
4.12Binary Operatorso e e e 62
4.12.1Arithmetic e 62
4.12.1.1Addition e 62
4.12.1.2Multiplication o000 63
4.12.1.3Division L. o 63
4.12.1.4Remainder e 63

4. 122Bitwise oL L e e e e e e e e e e e e 63
4.12.2.1Shift Right Arithmetic 63
4.12.22S8hiftLeft. e 64
4.12.2.3Bitwise AND e 64

4.12.2.4Bitwise OR e e e e 64

CONTENTS 5

4.12.25Exclusive OR oo 64
4.12.3Logical e e e e e 65
4.12.3.1Logical AND e 65
4.12.3.2Logical OR. e 65
4.13Unary Operators o v vt vt e e e e e e e e e 65
4.13.1Negate e e e e e e e e e 65
4.13.2Lo0gical NOT o e 65
4.13.3Decrement Lo e 65
4.13.4Increment L L L Lo e e e e e e e e e e 66
4.13.50nes Complement 66
4.13.6BitCount e 66
4.14Comparison Operators o0 e e e 66
4.14.1Equals e e e e 67
4.14.2NotEquals e 67
4.14.3Signed Less-Than 67
4.14.4Unsigned Less-Than 67
4.15Flow Control e e e e 67
4.15.1Explicit Branch o oL 68
4.15.2Explicit Subroutine0 0oL, 68
4.15.3Branch e 68
4.15.4Call Subroutine L0 oo oo 68
4.15.5Multi-Target o o o e e e e e e 69
4.15.5.1Cas€ e e 69
4.15.5.2IfThen Else 69
4.160Dbject e e e e e 70
4.16.1Charges L e e e e e e e e e e 70
4.16.1.1Charges Get e 70

4.16.1.2Charges Set e 70

CONTENTS 6

4.16.2Broken e e e e e e e e e 71
4.16.2.1Broken Get o oo 71
4.16.2.2Broken Seto e e 71

4.16.3Cursed e e e e e e e e e e e e e e e 71
4.16.3.1Cursed Get e e 71
4.16.3.2Cursed Set 71

4.16.4Poisoned Lo e e e e e e 72
4.16.4.1Poisoned Get o oo 72
4.16.4.2Poisoned Set Lo Lo 72

4.16.5SuUb Types o e e e e e e e e e e 72
4.16.5.1Subtype Get Lo 72
4.16.5.2Subtype Set e 73

4.16.60bject Type o o i i e e e e e e e e e e e e 73

4.16.7Fetch e e e e e 73

4.16.80bject Spawnl e e e e e e e e e e 74

4.16.9&0BJECTID e e e e e e e e e e e e 74

4.16.10bject Move Lo e e 75

4.16.1Cloud Create i i i it i it ittt e 77

4.16.1Missiles L e e e e e e 77
4.16.12.MissileInfoGet, 77
4.16.12.™MissileInfoSet oo 0oL 78

4. 17MONStEr L e e e e e e e e e e e e e e 78

4.17.1Monster Delete e 78

4.17.2Monster Inserto oL o 78

4.17.3Monster Variables 79
4.17.3.1Monster Variable Get 79
4.17.3.2Monster Variable Set 79

4.17.4Monster Possession i i it i e e e e e e e e e e e 80

CONTENTS 7

4.17.5Monster Movement Filter 80
4.17.5.1Monster Block Move 80
4.17.5.2Monster Location and Distance 80

4.18Cells e e e e 81

4.18.1Cell Flags e 81
4.18.1.1Cell Flag Types v o i v i it v it e i e 81
4.18.1.2CellFlags Get 83
4.18.1.3Cell Flags Set 83

4.18.2Extended Cell Flags 84
4.18.2.1Extended Cell Flags Get 84
4.18.2.2Extended Cell Flags Set 84

4.18.3Teleporter Copy o v v v v i i e e e e e e e e e e e e e 84

4.18.4Generator Delay e 84
4.18.4.1Generator Delay Set 85
4.18.4.2Generator Delay Get L. 85

4.18.5Neighbors Inspect L Lo 86

4.18.6Cell Inspect L e 87

4.18.7Location Decodeo e 88

4.18.8&THROW e 88

4.19Party and Characters e 88

4.19.1&ISCARRIED e 88

4.19.2Party Managemento e e e e 89

4.19.3Party Distance e 90

4.19.4Party Variables L oo 91
4.19.4.1Party Variable Get, 91

4.19.5Character Variables0 0oL, 92
4.19.5.1Character Variables Get 93

4.19.5.2Character Variable Set. 93

CONTENTS 8

4.19.6Character Location 0. 93
4.19.7Character Name it 94
4.19.8Character Possessions 0000 94
4.19.9Character Skillso L o 94
4.19.9.18Kkill Adjustement Parameters 95
4.19.9.2Give XP 95
4.19.9.3Level of Mastery 95
4.19.1&WHOHASTALENT it e e e e e e 96
4.19.1POISON o e e e e e e e e e e e e e 96
4.19.1Zeleport Party e 96
4.19.1Bevel XP Multiplier oo 97
4.20Effects e e e e 97
4.20.1Color Palette e 97
4.20.2Sound Play L e 97
4.20.3Text e e e e e e e e e e e e 98
4.20.3.1Display Cell Text 98
4.20.3.2Display FOO text, 98
4.20.3.3Clear Text e 98
4.20.34Text Get i e e e e e e 99
4.20.3.5Global Text 99
4.20.3.6Describe Object 99
4.20.4Savegame Controlo Lo 100
4.21Indirect e e e e e e e e e e e e 100
4.21.1&%INDIRECT o e e e e e e e 100
4.21.2Parameters Geto oL o e 100
4.21.3Parameters Set e 101
4.21.4Delay e e e e e e e e e 101
4.21.5Cast e e e e e e e 101

4.21.6X . .o i e e e e e e e e e e e e e 101

CONTENTS

5 Explanations

5.1 Basics

5.1.1 Understanding Integers

5.1.1.1
5.1.1.2
5.1.1.3
5.1.1.4
5.1.1.5
5.1.1.6

Switchesand Bits
Integers o L e
Negative integers L
Hexidecimal numbers
Enumerations 00

Bitflags

5.1.2 Instances e e e e e e e e e e

5.2 Memory . . .

...................................

5.2.1 Parameters
5.2.2 Manipulating the Stack,

5.3 Messages . .

5.4 Bitwise Operations e e e e

5.5 Instruction Reference e

5.5.1 Understanding Expressions

5.6 Flow Control

A Foo

B ASDF

...................................

103
103
103
103
104
104
105
105
105
106
106
106
106
106
106
107
107
108

109

110

Chapter 1

Introduction

Dungeon Specific Actuators (DSAs) are a programming system for Paul Steven’s “Chaos
Stricks Back” clone CSBWin. They provide dungeon designers a set of tools to create
.. and well as modifiy

DSAs are finite state-machines which execute FORTH (stack machine) like instruction
sequences, which operate solely on 32-bit integer data.

The term state refers to the fact that at any given moment a given machine is a
particular state which often, but not necessarily, reflects a logical physical state:
open/closed, standing/walking/running, etc.

The machine responds to events based on its state at the time the event occurred and
the type of event. For DSAs events are signaled or triggered by messages (2.3). Since
the machine’s behavior is dependent on two things (state and event) these are often
thought of as being a two-dimensional grid (2D state transition table) where the rows
and columns represent states and messages respectively.

1.1 Target Audience

The goal of this document is to be accessible to a wide target audience and a has
couple of main goals.

On one hand it is desired to present exact details on how DSAs operate so those
with workable programming skills can use as it as complete operational reference. To
achieve this requires that parts of document will be very difficult to understand if one
is not familiar with formal programming documentation.

10

http://www.dianneandpaul.net/CSBwin
http://en.wikipedia.org/wiki/State_machine
http://en.wikipedia.org/wiki/Forth_(programming_language)
http://en.wikipedia.org/wiki/Stack_machine
http://en.wikipedia.org/wiki/State_table

CHAPTER 1. INTRODUCTION 11

On the other hand it is desired ... XX

For those readers which have little to no programming experience, it is recommend
to skim through the Introduction and Basic Concepts chapters and then to proceed to
Explanations. Do not bother attempting to understand everything you read. In fact do
not be daunted if everything seems like gibberish. The goal of the read-through is to
expose you to the basic terminology and components of the system.

1.2 Overview

e A dungeon may contain up to 256 DSA definitions.
e A given level may use at most 32 of these definitions.

e Each instance of a DSA has two persistent storage slots, termed Parameters
(2.4.1).

e A dungeon may provided shared persistent storage slots termed Global Variables
(2.4.4).

¢ Instructions additionally have access to a stack (2.4.2), an array (2.4.3) and Tem-
porary Variables (2.4.5) during execution.

Chapter 2

Basic concepts

2.1 Instances

DSAs are game elements logically similar to items (specifically they are objects). The
designer creates the defination and the places an instance of that defination at a given
position within a cell.

Like other objects the engine allows multiple DSA instances in a given position of a
cell, which form a logical pile in the same manner any other game item would create.

It is allowed for a given position to contain more than one instance and in that case
the set of instances from a logical pile (one on top of the other).

2.2 States

States in DSAs are represented by integers and each definition allows a choice from
three mechanisms of storage:

1. Local — Each instance implicitly stores its state, where state is limited to a range of
0-31.

2. Global - All instances share the same state, and that state may be any 32-bit value.

3. Parameter B — Each instance stores its state within parameter B, which allows states
on the range of 0-1023.

The choice of state storage method is per DSA definition.

12

CHAPTER 2. BASIC CONCEPTS 13

2.3 Messages

Events are signaled to DSAs by message-passing.
DSAs communicate via message-passing (Actor model)

It is important to note that message are sent to a cell position and not to a specific
DSA instance. The engine allows multiple instances in a given cell position and in that
case each will receive the message in turn.

Is the order specified? I

2.3.1 Message Type

XXX

2.4 Memory

DSAs have access a number of logical elements which are arrays. In all cases these
arrays are zero-based indexed, or specifically for an n element array, the set of valid
indices are on zero to n-1, or formally: [0, n).

2.4.1 Parameters

Each instance of a DSA has two local persistent storage elements termed parameters,
which are called A and B respectively.

As mentioned in the description of an instance 2.1, multiple instances may occupy a
given cell position. A given instance in this pile may directly access the parameters of
the instances where are below it. For the instance to access the “A” and “B” param-
eters of the instance below the current executing the designer specifies “C” and “D”
respectively and “E” and “F” for two instances below, etc. This mechanism cannot be
used to access the parameters of instances above.

All values stored to a parameter are automatically truncated to 18-bits.

What is the promotion rule? I

http://en.wikipedia.org/wiki/Actor_model
http://en.wikipedia.org/wiki/Array
http://en.wikipedia.org/wiki/Index_(information_technology)

CHAPTER 2. BASIC CONCEPTS 14

2.4.2 Stack

The stack (LIFO) consists of 100 32-bit integers, which is empty on execution entry.
If during execution the stack either overflows or underflows, the engine displays an
error message and exits.

2.4.3 Static Array

The static array is shared (global) memory consisting of 100 32-bit integers.

Assuming that a value isn’t overwritten, will a given element retain the same value
throughout execution (ignoring game loading)?
What about on start-up or just after a load? Is the array zeroed?

&0 | read value from stack | (4.8.1)
&! | set value from stack | (4.8.2)

2.4.4 Global Variables

Global variables are shared persistent storage elements. Specifically they retain their
values across DSA calls and are loaded/saved with the game.

These are enabled by the designer through the “Edit/Global Info” panel, press the
“Edit Database” button and pull-down to “Global Variables” in “Database Type”. They
are enabled in banks (or groups) of 16. As of this writing the maximum allows is four
banks (up to 64 global variables).

Instructions which access these will be denoted as array accesses to global.

“GV" n"@" | read value from stack | (4.10.1)
“‘GV" n"!" | set value from stack | (4.10.2)

2.4.5 Temporary Variables

Temporary Variables are a set of local variables that only survive a single execution of
a DSA. Additionally references are checked. Specifically this means that it is invalid
to read a from given index before it has been written to. If an attempt to read prior to

http://en.wikipedia.org/wiki/Stack_(data_structure)
http://en.wikipedia.org/wiki/LIFO

CHAPTER 2. BASIC CONCEPTS 15

write occurs, the engine will display a programming error message but not terminate
the game.

Instructions which access these temporary variables will be denoted tempVar.

“V' n"Q@" | read value from stack | (4.11.1)
V' op " set value from stack (4.11.2)
&MONL&D (4.17.5.2)
&PARAM@ (4.21.2)
&PARAM! (4.21.3)

2.5 Cells

Each level of a dungeon is composed of a 2D grid of elements termed cells, which
are smallest logical element. So, when a player move forward one position, he/she is
moving from one cell to another. Cells can be broken into two types: open and closed,
which correspond to floors and walls respectively.

Each cell has four positions within it, which are described in Cell Locations 2.6.1.

2.6 Enumerations and Bit Encoding

Since DSA instructions always operate on integer values, there must be mechanisms
to map integers to various different required meanings.

2.6.1 Cell Locations

Instructions which ... will denote these as: cellLocation.

Cell locations are encoded using 2 bits for the position (2.6.4) within the cell, 6 bits
for the level and 5 bits each for the x and y coordinates.

31 1817 16 15 10 9 5 4 0

PO

w

level X y

Table 2.1: Cell Location Format

CHAPTER 2. BASIC CONCEPTS 16

Algebraically this can be expressed as:

(((64pos) + level) 32 4+)32 + y (2.1)

which expands to the following:

65536 pos + 1024 level + 32z + y

2.6.2 Locations

Some instructions allow...

cursor | —1 -1
character — (100 char1D + packIndex)
monster — (1000 monsterI D)

Table 2.2: Extended Locations

1. cursor

2. character

location = -1 (negative 1). The object is placed in the cursor. -1000 < location <=
-100. The object is placed on a character. location <= -1000. The object is placed on
a monster. location >= 0. The object is placed in one of the cells of the dungeon.

—In the cursor If the cursor already contains an object then no object is created
or placed. The 'posMsk’ parameter is ignored.

—On a character— The location parameter is of the form: - (100 * characterOrdinal
+ packIndex). If an object is already present at that spot in the backpack then no
object is created or placed. The 'posMsk’ parameter is ignored. See Pack Indices for
the numeric location numbers.

—On a Monster— The location parameter is of the form: - (1000 * monsterID). The
"posMsk’ parameter is ignored.

—1In a cell of the dungeon—— The location parameter determines the cell in which
the object is placed. The 'posMsk’ parameter determines the position within the cell.

CHAPTER 2. BASIC CONCEPTS 17

‘posMsk’ is a bit-encoded value with bit zero standing for direction zero (north), etc.
If 'posMsk’ is non-zero then the object is placed randomly in one of the positions for
which the corresponding bit is non-zero. If, for example, 'posMsKk’ is set to 5 then the
object will be placed randomly in either position zero (north) or position two (south).
If 'posMsk’ is zero (no bits set) then the object is placed at position zero. The location
parameter is encoded as three bitfields. Bits 10-15 are the 6-bit level number, bits
5-9 are the x (or column) coordinate, and bits 0-4 are the y (or row) coordinate.

2.6.3 Manhattan Distance

Distance calculations are based on Manhattan distances.

The standard definition, which will be termed manhattanDistance, is:

|20 — x1] + |yo — w1 (2.2)

A similar definition, which will be termed neighborDistance:

lzo — 21| + |yo — | — 1 (2.3)

Where (z¢,y0) and (z,y;) are the two sets of “x” and “y” cell coordinates, similar to
cellLocations 2.6.1.

Since moving objects are restricted to moving in the cardinal directions (N,S,E,W), the
Manhattan distance is the number of steps that would be required to move between
the two cells. The Neighbor distance is the number to steps to get to be one-step-away,
which will typically be used for comparing things like party-to-monster distances.

2.6.4 Facing and Positions

| ID || Facing/Closed | Open | mask |

0 NORTH NW 1
1 EAST NE 2
2 SOUTH SE 4
3 WEST SW 8

Table 2.3: Facings and Closed/Opens Cells

http://en.wikipedia.org/wiki/Manhattan_distance

CHAPTER 2. BASIC CONCEPTS 18

2.6.4.1 Position Masks

When instructions read or write data related to a specific position within the cell, this
will be denoted: XXX.

....mask columns for open (??) and closed (2.3) cells respectively.

2.6.5 Character Related
2.6.5.1 Character Numbers

Each hero has an associated ordinal: 0,1,2,3. These values indicate their position
left-to-right in the top display. Instructions which expect these values will be denoted
as:

charID ::={0-3}

Some instructions additionally allow specifing the active leader (by the value 4), they
will denote:

partylD ::={0-4}

Other instructions allow asking about any party member (by the value 5), they will
denote:

charAnylID ::={0-5}

2.6.5.2 Character Fingerprint

The fingerprint of a character is the initially set to the bottom 16-bits of the location
in the dungeon of the text that defined the character when he was reincarnated or
resurrected.

This value can be used to uniquely identify each character and is read and written as
part of the character’s variables (4.19.5). As such, it’s value may be modified as the
designer wishes. Keeping character fingerprints unique is advised for all but expert
programmers.

Example usages include:

e determining if a given character is in the party.

e allows to find the character’s name even when changed through reincarnation.

CHAPTER 2. BASIC CONCEPTS 19

The following instructions are related to the fingerprint:

| Instruction \ | Reference |
&CHARQ read character variables (4.19.5.1)
&CHAR! write character variables (4.19.5.2)
&CHARNAME retrieve character’s name (4.19.7)
&SWAPCHARACTER | add, remove and swap from party | (4.19.2)
&WHEREISCHAR characters current location (4.19.06)

2.6.5.3 Skills

Each character has 20 skills. Four of these are primary skills, which are displayed to
the user, and the remaining are secondary (or hidden) skills.

ID | parent | name ID | parent name
0 - fighter 10 1 throw
1 - ninja 11 1 shoot
2 - priest 12 2 identify
3 - wizard 13 2 heal

4 0 swing 14 2 influence
5 0] thrust 15 2 defend
6 0] club 16 3 fire

7 0 parry 17 3 air

8 1 steal 18 3 earth
9 1 fight 19 3 water

Table 2.4: Character Skills

| Instruction | | Reference |
&EXPERIENCE+ | add experience points to a skill | (4.19.9.2)
&MASTERY query a skill’s level (4.19.9.3)

Dungeon Master Encyclopaedia

2.6.5.4 Spells

Spells are cast by speaking 2-4 runes.

http://dmweb.free.fr/?q=node/691

CHAPTER 2. BASIC CONCEPTS 20

Power Elemental Form Class/Align
1000 | Lo 100 | Ya 10 | Ven 1 Ku
2000 | Um 200 | Vi 20 | Ew 2 Ros
3000 On |+ 300 Oh |+ |30 | Kath |+ |3 Dain
4000 | Ee 400 | Ful 40 Ir 4 Neta
5000 | Pal 500 | Des 50 | Bro 5 Ra
6000 | Mon 600 | Zo 60 | Gor 6 Sar

Table 2.5: Spell Runes

Further XXX: Dungeon Master Encyclopaedia

2.6.5.5 Inventory Slots

Each hero has 30 slots in which XXX

0 Left hand 8 Quiver, bottom left

1 Right hand 9 Quiver, bottom right

2 Head 10 Neck

3 Body 11 Pouch, top

4 Legs 12 Quiver, symbol position

5 Feet 13 Backpack, symbol position

6 | Pouch, bottom 14-21 Backpack, top row - left to right

7 | Quiver, top right 22-29 | Backpack, bottom row - left to right

Table 2.6: Inventory Ordinals

2.6.6 Object

THESE HUGE TABLES SHOULD BE MOVE TO AN APPENDIX I

http://dmweb.free.fr/?q=node/195

CHAPTER 2. BASIC CONCEPTS 21

ID Type Mask ID Type Mask
0] Door 1 | 0x0001 7 Scroll 128 | 0x0080
1 | Teleporter | 2 | 0x0002 8 Potion 256 | 0x0100
2 Text 4 | 0x0004 9 Chest 512 | 0x0200
3 | Actuator | 8 | 0x0008 10 | Miscellaneous | 1024 | 0x0400
4 | Monster | 16 | 0x0010 11 Expool! 2048 | 0x0800
5 | Weapon | 32 | 0x0020 14 Missile 16384 | 0x4000
6 | Clothing | 64 | 0x0040 15 Cloud 32768 | 0x8000

Table 2.7: Object Types and Masks

There are 16 possible 'classes’ or types of objects. Several DSA command require a
‘'mask’ of the object types of interest. For example, you may want only to examine
weapons and scrolls. In that case, you would use a mask of (0x0020 + 0x0080 =
0x00a0) (or 32 + 128 = 160).

Here are values necessary for manipulating monsters, items and the party inventory
slots.

Items numbers (with type number added) are used in &type calls (eg 50002 for torch).
For potions, you will get an &type value that includes the power (eg 200 powered DES
potion = 80000 + 512 + 200 = 80712). In order to identify a potion type, you need
to strip the power rating from it. This is made harder by the +80000 for potiontype.
Easiest to us '&type L80000 &% L256 &/’ and then compare the basic potion type
number directly (so for the DES potion, number recovered = 2). This wil not be neces-
sary for water/empty flasks (O will be power number associated - eg 85120 for empty
flask)

Basic cloud numbers are used in &createcloud calls (as documented). Add the 'cloud-
type’ number for &type calls (eg 150050 for a fluxcage) Inventory numbers are used
for both &chposs directly (eg LO L1 &CHPOSS to get the right hand of first character)
and also in &move/&add/&del command using -(char num * inventory number * 100)
for the position.

2.6.6.1 Monster Types

Basic monster numbers are used in &monster calls and all filters (eg 24 for dragon).
Add the 'monstertype’ value for &type calls (eg 40024 for a dragon).

MONSTERTYPE +40000

CHAPTER 2. BASIC CONCEPTS 22
0 Scorpion 10 Mummy 20 | Water elemental
1 Slime Devil 11 Black Flame 21 Oitu
2 Giggler 12 Skeleton 22 Demon
3 Flying Eye 13 Couatl 23 Lord Chaos
4 | Hellhound/Rat 14 Vexirk 24 Dragon
5 Ruster 15 Worm 25 Lord Order
6 Screamer 16 | Blue ogre/Antman 26 Grey Lord
7 Rockpile 17 | Wasp/Muncher
8 Ghost/Rive 18 Knight
9 Golem 19 Zytaz
Table 2.8: Monster Types
2.6.6.2 Item Types
Weapons WEAPONTYPE +50000
0 Eye of Time 11 Rapier 22 | Morningstar 33 Stick
1 Storm Ring 12 Biter 23 Club 34 Staff
2 Torch 13 Samurai 24 | Stone Club 35 Wand
3 Flamitt 14 | Side splitter 25 Claw Bow 36 Teo Wand
4 | Staff of Claws 15 | Diamond Edge 26 Crossbow 37 Yew Staff
5 Storm 16 | Vorpal Blade 27 Arrow 38 | Staff of Irra
6 Ra Blade 17 | Dragon Fang 28 Slayer 39 | Cross of Neta
7 Firestaff A 18 Axe 29 Sling 40 | Serpent staff
8 Dagger 19 | Executioner 30 Rock 41 | Dragon Spit
9 Falchion 20 Mace 31 | Poison Dart 42 | Sceptre of Lyf
10 Sword 21 | Mace of Order 32 | Throwing Star 43 | Horn of fear
44 Speedbow
45 | Firestaff B

Table 2.9: Weapon Types

Clothing CLOTHINGTYPE +60000

CHAPTER 2. BASIC CONCEPTS 23

0 Cape 15| ElvenBoots 30 | WoodenShield 45 | PoleynOfRa

1 | CloakOfNight 16 | Leatherderkin 31 | SmallShield 46 | GreaveOfRa
2 | TatteredPants 17 | LeatherPants 32 | MailAketon 47 | ShieldOfRa
3 Sandals 18 | SuedeBoots 33 LegMail 48 | DragonHelm
4 | LeatherBoots 19 BluePants 34 | MithralAketon 49 | DragonPlate
5 | TatteredShirt 20 Tunic 35 | MithralMail 50 | DragonPoleyn
6 Robe 21 Ghi 36 | CasqueNCoif 51 | DragonGreave
7 FineRobeA 22 | GhiTrousers 37 Hosen 52 | DragonShield
8 FineRobeB 23 Calista 38 Armet 53 Dexhelm

9 Kirtle 24 | CrownOfNerra 39 TorsoPlate 54 Flamebain
10 SilkShirt 25 | BezerkerHelm 40 LegPlate 55 | PowerTowers
11 Tabard 26 Helmet 41 FootPlate 56 | BootsOfSpeed
12 Gunna 27 Basinet 42 SarShield 57 Halter
13 | ElvenDoublet 28 | NetaShield 43 HelmOfRa
14 | ElvenHuke 29 | CrystalShield 44 PlateOfRa

Table 2.10: Clothing Types

Scroll Types SCROLLTYPE +70000

Potion Types POTIONTYPE +80000 (Strength: +0 to +255) potion_MonPotionA =
0,->0 potion_UmPotion = 1,->256 potion_DesPotion = 2,->512 potion_VenPotion = 3,-
>768 potion_SarPotion = 4,->1024 potion_ZoPotion = 5,->1280 potion_RosPotion = 6,-
>1536 potion_KuPotion = 7,->1792 potion_DanePotion = 8,->2048 potion_NetaPotion
=9,->2304 potion_AntiVenin = 10,->2560 potion_MonPotionB = 11,->2816 potion_YaPotion
=12,->3072 potion_EEPotion = 13,->3328 potion_ViPotion = 14,->3584 potion_WaterFlask
= 15,->3840 potion_KathBomb = 16,->4096 potion_PewBomb = 17,->5352 potion_RaBomb
18,->4608 potion_FulBomb = 19,->4864 potion_EmptyFlask = 20,->5120

Chest Types CHESTTYPE +90000

Miscellaneous Types MISCTYPE + 100 000

CHAPTER 2. BASIC CONCEPTS 24

0 Compass 15 Onyx key 30 Corn 45 Rope

1 Waterskin 16 | Skeleton key 31 Bread 46 | Rabbits foot
2 Jewel Symal 17 Gold key 32 Cheese 47 Corbum
3 Mumulet 18 | Winged key 33 | Screamer slice 48 Choker

4 Ashes 19 | Topaz key 34 | Worm round 49 | Lockpicks
5 | Hero's Bones? 20 | Sapphire key 35 Shank 50 | Magnifier
6 Sar coin 21 | Emerald key 36 | Dragon steak 51 | Zo Kath Ra
7 Silver coin 22 Ruby key 37 | Gem of Ages 52 Bones

8 Gor coin 23 Ra key 38 | Ekkhard Cross

9 Iron key 24 | Master key 39 Moonstone

10 Key of B 25 Boulder 40 The Hellion

11 Solid key 26 Blue gem 41 | Pendant Feral

12 Square key 27 | Orange gem 42 | Magical Box A

13 | Tourquoise key 28 | Green gem 43 | Magical Box B

14 Cross key 29 Apple 44 | Mirror of Dawn

Table 2.11: Miscellaneous Types

2.6.6.3 Foo Type

CLOUDTYPE +150000 Fireball = O Dispel = 3 Poison = 7 Death = 40 Fluxcage = 50,

== QBJECT TYPES ==============
enum OBJECTTYPE { obj_{first = 0, obj_Compass_N =0, //0 0 obj_FirstModifiableObject

= obj_Compass_N, obj_Compass_E, //1 1 obj_Compass_S, //2 2 obj_Compass_W,

//3 3 obj_Torch_a, //4 4 obj_Torch_b, //5 5 obj_Torch_c, //6 6 obj_Torch_d, //7 7
obj_Waterskin, //8 8 obj_Water, //9 9 obj_JewelSymal_a, //0a 10 obj_JewelSymal_b,

//0b 11 obj_Illumulet_a, //Oc 12 obj_Illumulet_b, //0d obj_Flamitt_a, //Oe obj_Flamitt_b,

//0f obj_EyeOfTime_a, //10 obj_EyeOfTime_b, //11 obj_StormRing a, //12 obj_StormRing b,
//13 obj_StaffOfClaws_a, //14 20 obj_StaffOfClaws_b, //15 21 obj_StaffOfClaws_c,

//16 22 obj_Storm_a, //17 obj_Storm_b, //18 obj_RABlade_a, //19 obj_RABlade_b,
//laobj_TheFirestaff_a, //1b obj_TheFirestaff b, //1c obj_TheFirestaff_c, //1d obj_OpenScroll
//1le obj_Scroll, //1f obj_LastModifiableObject = obj_Scroll, obj_Dagger, //20 32 obj_Falchion,
//21 33 obj_Sword, //22 34 obj_Rapier, //23 35 obj_Biter, //24 36 obj_SamuraiSword,

//25 37 obj_SideSplitter, //26 38 obj_DiamondEdge, //27 39 obj_VorpalBlade, //28

40 obj_DragonFang, //29 41 obj_Axe, //2a obj_Executioner, //2b obj_Mace, //2c
obj_MaceOfOrder, //2d 45 obj_Morningstar, //2e obj_Club, //2f obj_StoneClub, //30
obj_ClawBow, //31 obj_Crossbow, //32 obj_Arrow, //33 obj_Slayer, //34 obj_Sling,

//35 obj_Rock, //36 obj_PoisonDart, //37 obj_ThrowingStar, //38 obj_Stick, //39

CHAPTER 2. BASIC CONCEPTS 25

obj_Staff, //3a 58 obj_Wand, //3b 59 obj_TeoWand, //3c 60 obj_YewStaff, //3d 61
obj_StaffOfIrra, //3e 62 obj_CrossOfNeta, //3f 63 obj_SerpentStaff, //40 64 obj_DragonSpit,
//41 65 obj_SceptreOfLyf, //42 66 obj_TatteredShirt, //43 obj_FineRobe_a, //44
obj_Kirtle, //45 obj_SilkShirt, //46 obj_ElvenDoublet, //47 obj_Leatherderkin, //48
obj_Tunic, //49 obj_Ghi, //4a obj_MailAketon, //4b obj_MithralAketon, //4c obj_TorsoPlate,
//4d obj_PlateOfRa, //4e obj_DragonPlate, //4f obj_Cape, //50 80 obj_CloakOfNight,

//51 81 obj_TatteredPants, //52 82 obj_Robe, //53 83 obj_FineRobe_b, //54 84
obj_Tabard, //55 85 obj_Gunna, //56 obj_ElvenHuke, //57 obj_LeatherPants, //58
obj_BluePants, //59 obj_GhiTrousers, //5a obj_LegMail, //5b obj_MithralMail, //5c
obj_LegPlate, //5d obj_PoleynOfRa, //5e obj_DragonPoleyn, //5f obj_BezerkerHelm,

//60 obj_Helmet, //61 obj_Basinet, //62 obj_CasqueNCoif, //63 obj_Armet, //64

100 obj_HelmOfRa, //65 101 obj_DragonHelm, //66 102 obj_Calista, //67 103 obj_CrownOfNe
//68 104 obj_NetaShield, //69 obj_CrystalShield, //6a obj_SmallShield, //6b obj_WoodenShiel
//6c¢ obj_SarShield, //6d obj_ShieldOfRa, //6e obj_DragonShield, //6f obj_Sandals,

//70 obj_SuedeBoots, //71 obj_LeatherBoots, //72 obj_Hosen, //73 obj_FootPlate,

/ /74 obj_GreaveOfRa, //75 obj_DragonGreave, //76 obj_ElvenBoots, //77 obj_GemOfAges,

/ /78 obj_EkkhardCross, //79 obj_Moonstone, //7a 122 obj_TheHellion, //7b 123
obj_PendantFeral, //7c 124 obj_SarCoin, //7d 125 obj_SilverCoin, //7e 126 obj_GorCoin,
//7f 127 obj_Boulder, //80 128 obj_BlueGem, //81 129 obj_OrangeGem, //82 130
obj_GreenGem, //83 131 obj_MagicalBox_a, //84 132 obj_MagicalBox b, //85 133
obj_MirrorOfDawn, //86 134 obj_HornOfFear, //87 135 obj_Rope, //88 136 obj_RabbitsFoot,
//89 137 obj_Corbum, //8a 138 obj_Choker, //8b 139 obj_Dexhelm, //8c 140 obj_Flamebain,
//8d 141 obj_Powertowers, //8e 142 obj_Speedbow, //8f obj_Chest, //90 obj_OpenChest,
//91 obj_Ashes, //92 obj_Bones_a, //93 obj_MonPotion_a, //94 obj_FirstFullFlask

= obj_MonPotion_a, obj_UmPotion, //95 obj_DesPotion, //96 obj_VenPotion, //97
obj_SarPotion, //98 obj_ZoPotion, //99 obj_RosPotion, //9a obj_KuPotion, //9b obj_DanePotio
//9c obj_NetaPotion, //9d obj_AntiVenin, //9e obj_MonPotion_b, //9f obj_YaPotion,

/ /a0 160 obj_EePotion, //al obj_ViPotion, //a2 obj_WaterFlask, //a3 obj_LastFullFlask

= obj_WaterFlask, obj_KathBomb, //a4 obj_PewBomb, //a5 obj_RaBomb, //a6 obj_FulBomb,
//a7 obj_Apple, //a8 168 obj_Corn, //a9 169 obj_Bread, //aa 170 obj_Cheese, //ab

171 obj_ScreamerSlice, //ac 172 obj_WormRound, //ad 173 obj_Shank, //ae 174
obj_DragonSteak, //af 175 obj_IronKey, //b0 176 obj_FirstKey = obj_IronKey, obj_KeyOfB,
//bl 177 obj_SolidKey, //b2 178 obj_SquareKey, //b3 179 obj_TourquoiseKey, //b4
obj_CrossKey, //b5 obj_OnyxKey, //b6 obj_SkeletonKey, //b7 obj_GoldKey, //b8
obj_WingedKey, //b9 obj_TopazKey, //ba obj_SapphireKey, //bb obj_EmeraldKey,

//bc obj_RubyKey, //bd obj_RaKey, //be obj_MasterKey, //bf obj_LastKey = obj_MasterKey,
obj_LockPicks, //c0 192 obj_Magnifier, //c1 obj_BootsOfSpeed, //c2 obj_EmptyFlask,

//c3 obj_Halter, //c4 obj_ZokathraSpell, //c5 obj_Bones_b, //c6 obj_Special_a, //c7
obj_Special_b, //c8 obj_Special_c, //c9 obj_Special_d, //ca 202 obj_Special_e, //cb

CHAPTER 2. BASIC CONCEPTS 26

203 obj_Special_f, //cc 204 obj_Special_g, //cd 205 obj_Special_h, //ce 206 obj_Special_i,
//ct207 obj_Special_j, //d0 208 obj_Special_k, //d1 obj_Special_l, //d2 obj_Special_m,
//d3 obj_Special_n, //d4 obj_last = obj_Special_n, obj_NotAnObject = Ox{f }

2.6.7 Sounds

Two types of sounds are supported....blah, blah

ID ID

0 no sound 12 | snipped sound
1 | dropped dagger 13 ugh

2 switch 14 zap

3 door 15 screamer
4 dragon snarl 16 scorpion
5 wall tapping 17 swoosh
6 fireball 18 teleport
7 party scream 19 wall ugh
8 | mummy scream 20 worm roar
9 gulp 21 explosion
10 oof 22 giggler
11 ugh

Table 2.12: Built-in Sounds

Chapter 3

Filters

CSBWin allows modifying of parts of built-in game behavior via a filtering mecha-
nism. This is accomplished by setting up the matching “Special Location” within the
“Global/Edit” menu. At this special location, the designer sets up a DSA to perform
any required work.

Unless otherwise noted, when a filter is triggered the corresponding DSA is sent a S0
(Set 0) message. A rough outline of processing is as follows:

1. Get the set of parameters with the &PARAMQ@ (4.21.2) instruction.
2. Perform the desired modification of the parameters.

3. Return the set of parameters with the &PARAM! (4.21.3) instruction.

The remainder of this chapter describes each of the possible filters, as well as another
special location Indirect Actions (3.16) which may be required by filters to perform
game state changes which are disallowed directly within filter execution.

3.1 Spell Filters

Allows intercepting and modifying all spells that are cast.

27

CHAPTER 3. FILTERS 28

Zyx Notes:

I think those are the current in build msg:
LO:
L1:
L2:
L3:
LA4:
L5:
L6:
L7:

normal action, normal message

no action, no message

this spell is too difficult. study it

the spell fizzles

the spell fizzles and dies

this spell is too difficult.

%caster% needs more practice with this spell.
this spell requires a component.

This filter has 14 parameters:

Action (3.1) r/w
Incantation (3.1) r
charlD (2.6.5.1) r
Disable time ??
Missile Type
Party Location in Dungeon r
Party facing direction r
Skill Required
Spell Byte 5
Spell Class
10 Unused 1
11 Unused 2
12 Unused 3
13 Unused 4

OO N| OO x| W N = O

Table 3.1: Spell Filter Parameters

Action This is the action to be taken when the DSA exits. It is initially set to zero.
The possible actions are:

O — Proceed to cast the spell as usual using the Spell Parameters. If you do not modify
the spell’s parameters then this will cause the spell to be cast just as though there
were no filtering in effect. If you have modified the parameters then the spell will be
cast using those modified parameters.

1 — Cancel the spell. Print no message. The spell just quietly fizzles.

CHAPTER 3. FILTERS 29

2 through 100 - Cancel the spell and print a message. See the list of possible built-in
messages later in this discussion. TODO - add table of values.

Incantation The incantation is specified by a 4-digit decimal number. The four digits
are the four runes that are selected in the casting. If fewer than four are used then
the unused ones are zero. A ZO-Spell might be 1600 or 2600 or 3600 or 4600 or 5600
or 6600 depending on the 'power’. A fireball could be 1440 or 2440 or 3440 or 4440
or 5440 or 6440 depending on the 'power’. That should be enough examples to get the
idea across. A spell of 1700 would be nonsense because there is no seventh rune.

TODO - add a table of the runes and values I

3.2 Skill Adjust Filter

There is a function in the runtime engine named AdjustSkills. You can see a diagram
of it (RECREATE OR ADD LINK). The Adjust Skills Filter is activated before the first
code in that function. The Filter receives the following parameters :

0 charlD

1 Skill Number (2.6.5.3)

2 | XP gain (positive)

3 Reason (see below)
4-8 | for designer usage

Table 3.2: Skill Adjust Filter Parameters

The values of parameters 4-8 are assigned by the designer with &SETADJUSTSKILLSPARAM
(4.19.9.1) instruction.

Where Reason has one of the following values:

CHAPTER 3. FILTERS

Unknown

Physical Attack

WarCry, etc

Attack

Cast Spell 1

Cast Spell 2

Monster damages character

Skill

Increaser 1

Skill

Increaser 2

ORI N OO x| W N~ O

Throw by character

Table 3.3: Skill Adjust Reasons

30

The filter can change any of the parameters and the changed parameters will be used
by the function AdjustSkills. Only the first three (character index, skill number, and
experience to be applied) will have any affect on the assignment of skills. The remain-

ing parameters are simply for the filter to use to orient itself and make decisions.

3.3 Party Attack Filter

This filter will be called whenever the party invokes any of the attack options such as

SHOOT, BASH, FLIP, etc.

The DSA associated with this filter will (usually) be activated three times per action:

| message | when triggered | |

SO Pre-Attack
CO Attack
TO Post-Attack

Table 3.4: Party Attack Filter Messages

An overview of the sequence is as follows:

e All parameters are set to zero.

e Computes the values of parameters O through 10.

CHAPTER 3. FILTERS 31

e PreAttack - A SO message is sent to the DSA. The parameters that will be used
to determine the results and effectiveness of the attack are recorded in the pa-
rameters. The DSA can modify the attack type, abort the attack, change some
parameters, etc.

o If the filter sets attackType to a negative value in the previous step, all of the
remain steps are skipped.

e Attack - A CO message is sent to the DSA just prior to the attack. Again, the
DSA can examine and modify various parameters. Many of the attack types have
extra parameters that are defined only for that one attack type.

e PostAttack - A TO message is sent to the DSA - After the attack is completed, the
DSA will be called again and given an opportunity to modify the character’s dis-
able time, decrease in stamina, and the experience gained by the attack. Also, at
this time we will activate the monster that was attacked. Normally the monster
would have to wait for a Movement Timer to expire. But if the parameter acti-
vateMonster is non-zero then the monster is give a chance to move immediately.
Lord Chaos might attempt to escape from a Fusion attack, for example.

e Adjust character stats and active monster if activateMonster is has been set to a
non-zero value.

All of the variables used by the attack code are available to the DSA in the parameter
area. Additionally, ten variables in the parameter area that are not used by the attack
code will be set to zero before the first call to the DSA, will never be changed by
the attack code, and are available to the DSA to remember things between calls. It
is guaranteed that each of the three calls will occur once even in cases like FLIP or
CLIMBDOWN where no monster is involved and no damage is done, unless aborted
as mentioned above.

CHAPTER 3. FILTERS 32

0 10 Heal

1| War Cry 11 Window

2 | Physical 12 | Climb Down
3 Spell 13 | Freeze Life
4 | Hit Door 14 Light

5 Shoot 15 Throw

6 Flip 16 Default

7 Shield

8 | Flux Cage

9| Fusion

Table 3.5: Attack Data Type

Official Parameter list ******** PRELIMINARY **#***#*x

struct SHIELD // dataType = ADT_Shield { // atk_SPELLSHIELD // atk_ FIRESHIELD
i32 mustHaveMana; i32 strength; };

struct FLIP // dataType = ADT Flip { // atk_FLIP i32 heads; };

struct SHOOT //dataType = ADT _Shoot { // atk_SHOOT i32 success; i32 range; i32
damage; i32 decayRate; };

struct THROW { i32 side; // ReadOnly - O=left, 1=right i32 abort; // default=0 - non-
zero to abort action i32 facing; // ReadOnly - N,E,S,W i32 range; // WriteOnly 132
damage; // WriteOnly i32 decayRate// WriteOnly };

struct HITDOOR //dataType = ADT _HitDoor { // atk_BASH: // atk_ HACK: // atk. BERZERK:
// atk_KICK: // atk_ SWING: // atk_CHOP: i32 strength; };

struct WARCRYETC //dataType = ADT WarCry // atk CONFUSE: // atk_ WARCRY:
// atk_CALM: // atk_ BRANDISH: // atk BLOWHORN: { i32 mastery; i32 skilllncre-
ment; i32 effectiveMastery; i32 requiredMastery; };

struct PHYSICALATTACK //dataType = ADT_Physical { // atk_ BASH: // atk_ HACK:
// atk BERZERK: // atk KICK: // atk SWING: // atk CHOP: // atk DISRUPT: //
atk JAB: // atk PARRY: // atk STAB2: // atk STAB1: // atk STUN: // atk THRUST:
// atk_MELEE: // atk_SLASH: // atk_CLEAVE: // atk_PUNCH: i32 monsterDamage;
i32 staminaAdjust; 132 skillAdjust; i32 attackedMonsterOrdinal; };

struct SPELLATTACK //dataType = ADT_Spell { // atk_LIGHTNING: // atk_DISPELL:
// atk_FIREBALL: // atk_SPIT: // atk_INVOKE i32 spellRange; i32 spellType; i32
decrementCharges; // if non-zero (default = 1) };

struct HEAL { // atk_ HEAL i32 HPIncrement; };

CHAPTER 3. FILTERS 33

struct FREEZELIFE { i32 oldTime; i32 deltaTime; };
struct LIGHT { i32 deltaLight; i32 decayRate; i32 time; };

union ATTDEP { WARCRYETC warcryetc; PHYSICALATTACK physicalAttack; SPEL-
LATTACK spellAttack; HITDOOR hitDoor; SHOOT shoot; FLIP flip; SHIELD shield;
HEAL heal; FREEZELIFE freezeLife; LIGHT light; THROW throw; };

struct ATTACKPARAMETERS { i32 charldx; i32 attackType; i32 attackX; i32 attackY;
i32 monsterUnderAttack; //0 if none i32 monsterType; //or mon_undefined (=99) if
none i32 skillNumber; i32 staminaCost; i32 experienceGained; i32 disableTime; i32
neededMana; i32 unused; //damageToMonster; i32 decrementCharges; i32 activate-
Monster; i32 userInfo[10]; i32 dataType; // = ADT_***** ATTDEP attdep; };

The Parameters that are computed prior to the PreAttack call to the Filter Character
Index of atacking character Attack Type (See Attack Types) AttackX AttackY ID of
Monster Under Attack Type of Monster Under Attack (See Monster Types) Skill Num-
ber Stamina Cost Experience Gained (Many attacks modify this) Disable Time (Many
attacks modify this). Needed Mana

Parameters that are computed prior to Attack call to the Filter Damage to monster
Decrement Charges flag.

Parameters for use by DSA 14-015-016-017-018-019-020-021-022 -
023-0

3.4 Feeding Filter

This filter is called when a hero attempts to consume an item.

The sequence is as follows:

1. The parameters are cleared.

2. The standard feeding process is executed, except no changes are made to either
the character or the item. Instead, the changes that would have normally occured
are placed in the parameters.

3. The filter is executed.

4. The parameters are applied to the character and to the object.

CHAPTER 3. FILTERS

0 perform b |1 14 S
1 charID ur 15 u
2 | object number | ur 16 u
3 object type ur 17]
4 objectID ur 18 S
5 Food amount | s |2 19 u
6 | Water amount | s | 2 20 b
7 potion type ur | 3 21 b
8 | potion strength | ur 22 b
9 Strength adj S 23 S
10 | Dexterity adj S 24 ur
11 Wisdom adj S 25 S
12 Vitality adj S} 26 S}
13 Antiven b
Table 3.6: A

Parameters: "s" = signed; "u" = unsigned; "b" = boolean; "r" = readonly

1. Set to false to do abort the action and do absolutely nothing.
2. Amounts to increase the hero’s food and water.

3. Value is -1 if not a potion. ADD LINK

O - b - perform feeding; Set false to abort the feeding and do absolutely nothing.

1 - ur - charlD;

2 - ur - object database number; 10=misc; 8=potion;

3 - ur - object type; See Object Type Numbers.

4 - ur - object ID.

5 - s - foodValue; Food value to be added.

6 - s - waterValue; Water value to be added.

7 - ur - potion type; See Potion Type Numbers. (-1 if not potion)
8 - ur - potion strength

9 - s - strength adjustment;

10 - s - dexterity adjustment

34

CHAPTER 3. FILTERS 35

11 - s - wisdom adjustment

12 - s - vitality adjustment

13 - b - antiVenin

14 - s - stamina adjustment

15 - u - shield strength adjustment

16 - u - shield duration

17 - s - mana adjustment

18 - s - hitpoint adjustment

19 - u - heal count

20 - b - empty flask. Remove Potion from Flask or water from Waterskin.
21 - b - empty hand. Remove the object from hand and delete from dungeon.
22 - b - chew

23 - s - swallow sound. Usually 8. Set to -1 to make no sound.

24 - ur - Party location

25 - s - antiMagic Adjust

26 - s - antiFireAdjust

Parameter #19 is a bit strange. A healing potion causes 'ouches’ to disappear. The
code clears random ‘ouches’ locations. It will try this several times until at least one
‘ouch’ is removed or until this count is reached. So if you set this count to zero then
no ‘ouches’ will be removed. Setting it to one give a small chance that 'ouches’ will be
removed. Setting it to 10 will make the probability almost certain.

Parameter #20 controls whether a waterskin has water removed from it and whether
a potion is converted to an empty flask. This is initially true for Potions or non-emtpy
Waterskins. If you set it false (zero) then the waterkin or potion can be used again.

Parameter #21 controls whether the object will disappear. This in normally true for
food items and false for potions and waterskin.

3.5 Character Death Filter

Single parameter, which contains the charID (2.6.5.1)of the dying character.

CHAPTER 3. FILTERS 36

3.6 Viewing Filter

This filter is called when the player clicks on the hero’s eye in the inventory screen.

There are three read-only (PhraseMask may be implictly modified as noted below):

I ASSUME THE READ-ONLY STATMENT IS CORRECT. I

O | PhraseMask
1 objectID
2 charlD 2.6.5.1

Table 3.7: Viewing Filter Parameters

The bits in PhraseMask specifies the set of text to be displayed (see below).

The parameter objectID specifies the object being examined:

e If the value is negative 1 (OxXFFFFFFFF), then no object is being viewed. Instead,
the character’s current stats are about to be displayed. In this case PhraseMask
is set to zero and the filter is only being notified of the event. It can do nothing to
modify what is displayed.

e If the object is a scroll then the PhraseMask is set to zero and the filter can
change the objectID to be a different scroll, so that perhaps different members of
the party see different words on the scroll.

The parameter objectID specifies the character performing the action.
There are a total of eight phrases that can be displayed:

The first six are placed in parentheses and are initially set to "CONSUMABLE", "POI-
SONED", "BROKEN", "CURSED", "', and "".

The last two are placed on separate lines following the parenthesised list. The first
of these two is generally initialized to the "WEIGHT x.x KG", and the second of these
two is initialized to the empty string. Each of the eight phrases is printed only if the
PhraseMask has the corresponding bit set. Bit zero for the first phrase, etc. This mask
can be manipulated with the &DESCRIBE operation. The PhraseMask is initialized to
print those phrases that apply to the object.

For example, an Apple is ' CONSUMABLE’ so bit zero would be set.

CHAPTER 3. FILTERS 37

Summary:

| | Initial Value | |

0 | CONSUMABLE | 1
1 | POINSONED 1
2 BROKEN 1
3 CURSED 1
4 1,2
5 1,2
6 2,3
7 2,3

Table 3.8: Object Description Text

1. Parentheses are placed around these six when displayed.
2. XX

3. On a separate line

Manipulating the PhraseMask and the associated text is acompished with the instruc-
tion &DESCRIBE (4.20.3.6).

3.7 Cursor Filter

This filter is activated whenever the contents of the cursor is changed. The cursor
represents the hand of the lead character and is used to manipulate items.

There are six parameters, the first indicates the type of the event and the remainder
are type specific. The following indicates a common usage:

type
level
X
y
position
?

Ol WIN|—~O

Table 3.9: Cursor Filter Parameters

CHAPTER 3. FILTERS 38

The objectID of the object being put into the cursor or taken from the cursor A code
telling what sort of transaction is taking place (see enum CURSORFILTER_TYPE be-
low) P1 P2 P3 P4

_Type | [|
0 unknown N P1-P4 =0
1 read game N P1-P4 =0
2 pick from floor Y
3 place on character | Y
4 | pick from character | Y
5 throw Y
6 entering prison N P1-P4 =0
7 drop object Y
8 eat N?

9 resume saved game | N?

10 DSA DEL N

11 DSA ADD N

12 take from sconce Y (3.7)
13 place in sconce Y (3.7)
14 swap remove

15 swap replace

16 gift from god

17 take key

18 DSA MoveFrom

19 DSA MoveTO

20 CANCEL used in filter to cancel

Table 3.10: Cursor Filter Types

Pick From Floor

“Place on” and “Pick from” Character

“Take from” and “Place in” Character

CHAPTER 3. FILTERS 39

3.8 Attack Option Name Filter

This is called whenever the name of an action is about to be displayed.

The filter is called one to three times, once for each of the possible actions of a given
item.

The parameters are:

0 charID 2.6.5.1

1 Actionlndex (0,1,2) for three possible
2 ActionName initialized to -1

3 | Number of valid attack options.

4 AttackType

Table 3.11: Attack Option Name Parameters

charlD specifies the index of the XXX

Actionindex specifies the (0,1,2)

ActionName may be modified by the filter. If it has a value on the range of O to
65535, then xx

([] XXX

AttackType

The filter may replace ActionName with another integer. After the DSA executes, this
integer is examined. If it is an integer between O and 65535 then it is used to fetch the
associated Global Text Variable (add LINK), which is displayed as the action’s name.
Otherwise the default action name is displayed.

Additionally it's important to note that Attack Type (parameter 4) can be changed
to values other than those in-built. The value of this parameter is transmitted to
the Party Attack Filter (3.3), thus allowing the designer to add custom actions (with
custom names and effects) through the use of these two filters.

CHAPTER 3. FILTERS 40

0 - 11 | Freezelife 22 | Confuse 33 | Spellshield
1 Block 12 Hit 23 | Lightning 34 | Fireshield
2 Chop 13| Swing 24 | Disrupt 35| Fluxcage
3 - 14 | Stab2 25 Melee 36 Heal

4 | Blowhorn 15 | Tthrust 26 - 37 Calm

5 Flip 16 Jab 27 | Invoke 38 Light

6 Punch 17 Parry 28 Slash 39 | Window
7 Kick 18 Hack 29 | Cleave 40 Spit

8 Warcry 19 | Berzerk 30 Bash 41 | Brandish
9 stabl 20 | Fireball 31 Stun 42 Throw

10 | Climbdown 21 | Dispell 32 Shoot 43 Fuse

Table 3.12: Built-in Attack Types

3.9 Equip Filter

When an two items are swapped, is the order insured to be: remove followed by add? I

This filter is triggered whenever an object is added to or removed from any of the
30 locations on a Character’s body, quiver, backpack, or whatever, the DSA at that
location will be called. This feature might be used, for example, to modify a Charac-
ter’s strength whenever a Corbum is added to his possessions or to warn him of the
consequences of carrying the object. The DSA will be called:

| message | when triggered | |

SO Object is added
CO Object is removed

Table 3.13: Equip Filter Messages

NOTE: that the filter does NOT get called when objects are placed in or removed from
a chest.

There are four parameters provided to the Filter:

CHAPTER 3. FILTERS 41

charlD character effected
equipPos LINK TO TABLE
objectID | object add/removed
flags always zero

WIN = O
]

Table 3.14: Equip Filter Parameters

3.10 Party Move Filter

The party move filter is entered with the following structure as the parameters. In
general, you can inhibit the movement by setting a bit in the flags parameter.

enum PARTYMOVE_CONSTANTS { PM_BEGINTURN = 1, PM_STAIRWAY = 2, PM_ATTEMPTMOV
= 3,

PM_INHIBITMOVE = 0x0001, PM_SETDELAY = 0x0002, PM_ADDDELAY = 0x0004, };

struct PARTYMOVEDATA { ui32 moveType; // PM_BEGINTURN // The party is about
to turn. // 'fromLocationType’ is valid. // if locationType = 3 = stairwell then if you
do not // inhibit the movement the filter will be called // again when the party is
about to traverse the // stairwell. // 'toLocationType’ is valid. // ’fromLocaation’ is
valid. // 'toLocation’ is valid unless locationType is stairwell. // °direction’ is O, 1,
2, 3 for right, left, up, down. // flags is 0. // Set flag PM_INHIBITMOVE to cancel
the turning movement // PM_STAIRWAY // The party is about to traverse a stairway.
// ‘relDirection’ = 'absDirection’ = O for down, 1 for up // ’flags’ = 0 // ’fromLoca-
tion’ is valid // ’toLocation’ is valid // ’fromLocationType’ is valid // 'toLocationType’
is valid and is equal to 3. // Set flag PM_INHIBITMOVE to cancel the movement //
PM_ATTEMPTMOVE // The party is about to attempt a move forward, backward, slide
left, slide right // 'relDirection’ O, 1, 2, or 3 for forward, right, backward, left // ’abs-
Direction is O, 1, 2, or 3 for north, east, south, west // ’flags’ is zero // fromLocation’
is valid // ’toLocation’ is valid // 'fromLocationType’ is valid // 'toLocationType is
valid // ’staminaAdjustments are valid and you can change them. They will // not
be applied if the move is inhibited by PM_INHIBITMOVE. // You can set delay to be
the delay before the party can move again. // If you set PM_SETDELAY then this
value will be used whether or not // the party moves. They may be inhibited by a
monster, for example. // If you set PM_INHIBITMOVE then the delay will be ignored.
// If you set PM_ADDDELAY then this value will be added to the computed // delay
only if the party actual moves. // Set flag PM_INHIBITMOVE to cancel the movement.
ui32 flags; ui32 delay; ui32 staminaAdjustment[4]; // decrement to stamina; -1 if

CHAPTER 3. FILTERS 42

character non-existent ui32 relDirection; // ui32 absDirection; ui32 fromlLocation;
// location with pos = facing. ui32 toLocation; // location with pos = facing. ui32
fromLocationType; // cellType (or roomType) O=stone, etc. ui32 toLocationType; };

3.11 Monster Attack Filter

Allows modifying the standard actions when a monster is about to attack the party.

This filter has 20 parameters:

0 objectID

1 type

2 index in group 0-3
3 level

4 position-x

5 position-y

6 cell position

7 missile origin position

8 missile range

9 missile damage

10 missile friction

11 | direction (monster to party) | (2.3)
12 distance to party (2.3)
13

14

15 shouldSteal

16

17

18

19

Table 3.15: Monster Attack Parameters

[0] Monster ID. This is the "Indirect Pointer Index" of the monster group that is attack-
ing the party. It is a unique identifier among all objects in the dungeon. It can only be
reused if the group of monsters is killed. Then it can be reused for any type of object
that is created during gameplay.

CHAPTER 3. FILTERS 43

[1] Monster Type. Giggler, Screamer, etc. See Monster Types.

[2] Monster Index. The index of the particular monster within the group of monsters
that is carrying out the attack. 0-3.

[3] Monster Level. This is the dungeon level of the monster.
[4] Monster X. This is the X-coordinate of the monster.
[5] Monster Y. This is the Y-coordinate of the monster.

[6] Monster Position. This is the position of the monster within the cell. 0=NW, 1=NE,
2= SE, 3= SW.

[7] Missile Origin Position. The position within the cell at which any missile will be
launched. This is not the same as the Monster Position because if the monster is
standing in the rear of the group (relative to the party) then the missile would hit his
own companion in front. So the Missile Origin Position is moved to the front of the
group (relative to the party).

[8] Missile Range. This is computed by the following sequence of operations: Range =
Monster Descriptor Byte8[4] / 4 + 1 Range = Range + Random(Range) Range = Range
+ Random(Range)

[9] Missile Damage. This is set to Monster Descriptor Byte8[4].

[10] Missile Friction. This is the amount subtracted from Missile Range and Missile
Damage each time the missile moves. Standard value is 8;

[13] Missile Type. An integer specifying whether Fireball, PoisonCloud, etc. See Missile
Types. This is computed from the Monster Type as follows: Vexirk or Lord Chaos -
Random (Fireball 50%) (Dispell, Lightning, Zo, Poisoncloud each 12.5%) Slime Devil -
Poison Flying Eye - Random (Lightning 87.5%) (Zo 12.5%) Zytaz - Random (Fireball,
Poisoncloud each 50%) Demon or Dragon - Fireball Anything else - No Missile

[14] Monster Should Launch Missile - Non-zero if the monster should attack with
a missile spell. Compute with the following sequential steps: Set to 0. Set to 1 if
Distance To Party is greater than 1. Set to 1 with 50% probability. Set to O if bits
12-15 of word 14 of the Monster Descriptor are less than 2.

[15] Monster Should Steal - Non-zero if the monster should try to steal an item from
the party. Set to 1 if the monster is a Giggler.

[16] Index of hero to damage. O to 3. This index is computed in one of two ways
depending on the Monster Descriptor word 2 bit 4. If word 2 bit 4 is non-zero then the
index is the index of a random, live character. If word 2 bit 4 is zero then this is the
index of the hero closest to the monster. Closest means closest front-to-back (relative

CHAPTER 3. FILTERS 44

to the monster). If two heroes are equally close front-to-back then choose the one of
the two closest left-to-right.

[17] The ordinal of the Attacking Sound. Zero means silence.

[18] Disable Time - Set to -1 to mean unused. Perhaps someday we can do this.
[19] SupressPoison Set to -1 initially. Set this to +1 to suppress poisoning.

The Attack - or - How the Parameters are used.

The sound of the attack is queued. Then we chose the Type-of-Attack and carry it out.
There are three different Types-of-Attack:

1. Missile
2. Theft
3. Physical attack

We will describe how the Type-of-Attack is selected and then how each type is carried
out.

Selecting the Type-of-Attack First we look to see if the monster should launch a
missile (parameter Monster Should Launch Missile is non-zero). If so, the monster
attempts to launch the missile and we are done. Note that if the Monster Should
Launch Missile then the parameter named Monster Should Steal is ignored. Note that
if the Monster Should Launch Missile but the Missile Type is NONE then nothing is
launched and the attack totally fizzles (you can completely abort an attack this way).

Second we look to see if the monster should steal an item from the party (parameter
Monster Should Steal is non-zero). If so, the monster attempts to steal an item and,
whether or not it is successful, the attack is complete.

Lastly, the monster attempts to inflict physical damage.

Launching a Missile If the Missile Type is NONE (or illegal) then no missile is
launched and the attack is complete. Otherwise we launch the missile specified by
parameter Missile Type from the location indicated by parameters Monster X, mon-
ster Y at Missile Origin Position. The missile will travel in the direction indicated by
parameter Direction to Party. Its range and damage will be set to parameters Missile
Range and Missile Damage and its friction will be set to the parameter Missile Friction.

CHAPTER 3. FILTERS 45

Stealing an Item The monster will attempt to steal an item from the hero designated
by the parameter Index of Hero to Damage. The theft may or may not be successful,
but in either case the attack is complete. Someday we may use one of the unused
parameters to specify which item or kind of item should be stolen.

Inflicting Physical Damage The standard mechanisms are used to cause damage
to the hero specified by Index of Hero to Damage. The attack may or may not be
successful. In any case, the attack is complete.

3.12 Monster Movement Filter

This filter is called twice whenever a monster is making some sort of move or an attack.

| message | when triggered |]
SO About to move or attack
CO Action is complete

Table 3.16: Monster Moving Filter Messages

Because DSAs are rather CPU hungry it is best to select the options that only activate
the DSA if the monster is on the same level as the party and is close by. It is possible to
specify a different DSA to be used on each level of the dungeon. If no DSA is specified
for a level then the 'Global’ one is used.

The DSA receives parameters that provide information about the monster, its position,
and the party’s position. The DSA can then affect how the monster moves by using
the &MONBLK (Monster Block) operation. This instruction has no effect whatsoever
outside of a Monster Movement Filter and it only applies to the one monster that is
about to move.

Here are the parameters:

CHAPTER 3. FILTERS 46

Monster’s dungeon level
Monster’s X location (relative to level’s x offset)
Monster’s Y location (relative)
Object ID of monster
Party’s dungeon level
Party’s X location (relative)
Party’s Y location (relative)
Clear O message only - Action flags 0-31
Clear O message only - Action flags 32-63

O N O Ul | W N = O

Table 3.17: Monster Moving Parameters

Note that the Monster’s level-, x-, and y-coordinates may be different on the two calls
to the Filter. If the monster moves to a different cell then its new position will be
indicated. If the monster is removed from the dungeon then its level will be -1. In
either of these two cases, the flag MonMove_differentCell will be set.

The DSA is activated with a 'Set O’ whenever the monster is about to do something.
There is no way to tell what it is up to. It may turn, move, attack, or flee. The code is
impenetrable, at least to me. During the processing of the code we set 'Action Flags’
to provide some information about what the code is doing and, therefore, what action
the monster has taken.

enum MONSTEREVENTS { MDF6TI_turnMonsterTowardParty = 0, TMAG_tunrMonsterGroup

= 1, TMAG_turnMonsterGroup = 2, PIn_turnMonsterGroup = 3, PIn_moveTwoSquaresSucceedec
= 4, PIn_moveTwoSquaresFailed = 5, SF_greaterThanSmellingDistance = 6, SF_return

=7, SF_DeleteTimersMaybeSetFear = 8, SF_timeFuncMinusThree =9, SF_TurnMonstersAsGrou
10, SF_IncrementTime = 11, PIAF_processlnvincible = 13, PIAF_standardFinish

= 14, T524_possibleMove = 15, T524_moveSucceeded = 16, T524_moveFailed = 17,
T524_processinvincibleAndFinish = 18, T524_mabeDeleteTimersFear6Turnlndividuals

=19, T524_ProcessInvincibleAndFinish = 20, IC29to41_atLeastOneMemberAlreadyDead

=21, IC29to41_damageMonsterSucceeded = 22, IC29to41_atLeastOneMemberAlreadDead

= 23, IC29to41_damageMonsterFailed = 24, IC29to41_randomMoveSucceeded = 25,
IC29to41_randomMoveFailed = 26, IC29to41_doNothing = 27, IC29to41_exitFalse =

28, TT29t041_TT31 =29, TT29t041_fearb5or6 = 30, TT29to41_TT30 =31, TT29t041_fear5or6doN
= 32, TT29to41_TT30turnAsGroup = 33, TT29to41_TT30deleteTimersMaybeSetFear =

34, TT29to41_TT30IncrementTimeByW52PlusRandom = 35, TT29to41_TT30TryDirectionsD5tol
= 36, TT29to41_TT29 = 37, TT29to41_TTmonsterA3 = 38, TT29to41_blocked = 39,
TT29to41_fearNotbor6 = 40, TT29to41_MaybeDeleteTimersFear6TurnIndividuals = 41,

TT29t041 _fearOor3 = 42, TT29to41 fear6 = 43, TT29to41_w30w32GretaterThan3 =

CHAPTER 3. FILTERS 47

44, TT29to41_TTnot37 = 45, TT29to41_fearb = 46, TT29to4 1_attacking = 47, TT29to41_notAttac
= 48, 1C29to41_Not32_33_37_38 = 49, MoveObject_NotAllowedOnLevel = 50, Mon-
Move_differentCell = 51, };

3.13 Monster Delete Filter

This filter is triggered when a monster is being deleted from the dungeon. The param-
eters are:

monsterID
level
X

y
type
drop residue (3.13)
death cloud (3.13)
index index in group, -1 for all

N OOl | W N+ O
"’i%%"ﬁ"ﬁ"ﬂ"&"’i

Table 3.18: Monster Delete Parameters

Where the parameter type is:

unknown
fusion
make room
damage
movement 1
movement 2

Ol W N = O

Table 3.19: Monster Delete Type

Drop Residue The pre-defined items (like worm round, screamer slices, etc): 0 =
default, 1 = drop and 2 = noDrop.

Death Cloud

CHAPTER 3. FILTERS 48

3.14 Sound Filter

This filter is triggered whenever one of the standard internal sounds is internally
initiated. It has the following parameters:

Sound Number
Volume (-1=no sound, O=low, 1=high)
Distance to party squared
Sound Source Level
Sound Source X (relative)
Sound Source Y (relative)
Game Volume setting
No Sound flag
Distance to party in units of 0.01

OO Ol =< W N —|O

Table 3.20: Sound Filter Parameters

Example: 1 north and 1 west gives distance = 141.

If a Sound Filter is configured to receive sound notifications then the information will
be passed to the Filter and the sound itself

WILL NOT BE SENT TO THE SPEAKERS **.

This means that the Filter MUST re-initiate the sound with an '&SOUND’ command
using the first two parameters (Don’t forget to negate the ‘Sound Number’}. Of course,
the filter may wish to change the sound or volume or not make the sound at all,
depending on whether or not the party has recovered from the Deafness spell cast
by that Vexirk on level 5. The sounds produced by the &SOUND command are not
passed to the Sound Filter, so there is no fear of infinite recursion.

This behavior is a bit different from the other filters which allow the filter to modify
parameters before the action occurs. The built-in sounds of the game do not pass by
the Sound Filter on their way to the speakers. These sounds actually pass THROUGH
the Sound Filter.

3.15 Missile Encounter Filter

This filter is called when a missile event occurs.

CHAPTER 3. FILTERS 49

A Missile consists of the missile itself and projectile within the missile. For example,
a missile might contain an arrow or a FUL BOMB.

The filter receives four parameters:

0 type (see below) | r/w
1 | location | cellPosition

2 | missile objectID
3 | projectile | objectID

Table 3.21: Missile Encounter Parameters

O - The type of encounter 1 - Location of the encounter 2 - The object ID of the
containing Missile 3 - The object ID of the contained projectile

The parameter type indicates the type of the event:

L] meaning | Effect on cancel |
1 monster will miss
2 door pass through
3 solid trick wall pass through
4 solid wall (fall to floor) N/A (fall to floor)
5 | max distance reached (fall to floor) | N/A (fall to floor)

Table 3.22: Missile Encounter Types

The Filter should set the type field to zero and return the parameters in order to cancel
the encounter. The effect of doing this varies depending on the original type.

3.16 Indirect Actions

Certain instructions are not allowed in DSA filters. Generally, these are instructions
that could result in dungeon state changes. An example is &MOVE (4.16.10) which
causes an object to be deleted from one location and added to another. Conversely
there are instructions which may only be called within a particular filter, such as
&MONBLK. Each instruction with any such a limitation will noted at the beginning of
its description.

CHAPTER 3. FILTERS 50

Instructions where are not allowed in filters have an indirect version which can be
used. These indirect versions have the same name with the percent character in-
serted immediately after the initial ampersand (e.g. &%MOVE). These indirect versions
gather together all the parameters needed to perform the operation and sends them
off to another DSA using the &MESSAGE instruction. When the filter is completed, the
message will be delivered to this Indirect Action Filter which can use the instruction
&%INDIRECT (4.21.1) to reconstruct the necessary parameters from the message and
perform the operation that was initially intended.

The Indirect Action DSA need not use the &%INDIRECT instruction if it chooses to
manipulate the parameters themselves. For example, it may want to see if an object
that it is about to delete still exists. The parameters have this format:

- The action to perform - The number of stack entries - . . . the stack entries . . . Top
of stack comes first - Flag — O if no array variables. 1 if array variables. Top of stack
is number of variables, next to top is index of first array variable - . . . Array variables
. . . - Number of parameters - . . . parameters . . .

The action to perform is from this list: Del = 79 Add = 80 CreateCloud = 81 Cast = 82
TeleportParty= 83 MonsterStore = 84 CharStore = 85 Move = 86 Copy = 87 CellStore
= 88 Throw = 89

The message that delivers this information has a delay of O and therefore the operation
will not be delayed in game time. But it will be delayed in realtime and you need
to know that when you say &%MOVE the actual move will not take place until the
current DSA is completed. Moreover, multiple indirect operations within a single DSA
will not necessarily be performed in the same order that the commands were issued.
For example, if you do an &%ADD followed by an &%DEL, the delete may actually be
performed before the add.

Chapter 4

Instruction Reference

4.1 Terminology
| | |

operand an input taken from the stack

4.2 Expressions

foo ::=bar
‘ literal expression
foo bar foo concatenated with bar
foo | bar either a _foo or bar expression
[foo] Zero or one foo expressions
{foo}+ one or more foo expressions
{foo}* zero or more foo expressions

51

CHAPTER 4. INSTRUCTION REFERENCE 52

4.3 Foo

EXPRESSION ..ottt ittt et aie e eaaes DEFAULT VALUE
integer ::={0-9}+

signedInteger ::=[*+" | “-"] integer

leVel ::=iMLEGET e ettt e (current level)
position :="N" | “E7 | “S7 | W i e e e et (“N”)
absLocation ::=level “(” column “,” row “)” [position] (current cell)
delay :={ integer | X | Y b o e 0)

localParameter ::= “A” | “B”

dsaParameter ::= localParameter | {“C” - “Z"}

4.4 Interpreting Instruction Descriptions

...items removed = ...items added

4.5 General

4.5.1 NOP

N

No operation. Useful as a single instruction sequence which merely modifies the state.

IN Next state is set to '1’ (assuming first instruction)

4.5.2 Load

CHAPTER 4. INSTRUCTION REFERENCE 53

“L” value

= ...value

Pushes value onto the stack, where:

value ::=integer | dsaParameter |absLocation

6L33 Next state is '6’ (assuming first instruction) and push ’33’ onto the stack

L1 Push ’1’ onto the stack
LA Push the value of parameter A onto the stack
L5(4,3)E Push ” onto the stack (2.6.1)
(((64pos) + level) 32+ 2) 32 +y 4.1)

4.5.3 Load DSA Location

L$

= ... cellLocation

Pushes the location of the current executing DSA instance.

4.5.4 Set State

&SETNEWSTATE

..n o =

Sets the next state of the instance to n.

4.5.5 Random Number

CHAPTER 4. INSTRUCTION REFERENCE 54

&RAND

..n = ...result

Returns a random number between O and n-1 inclusive, or formally: [0, n).

As an example: L6 &RAND will return one of the following values: 0,1,2,3,4,5

4.5.6 Read Time

&TIME@

= ... result

Returns game clock tick in ; second increments.

Is the tick game time? (save/loaded with savegame?) I

4.5.7 Global Information Get

&Global@

...n = ...value

Currently returns the party location if n = 1, and zero for any other value.

4.5.8 Override

“O” overrideType [integer]
=

overrideType ::=“P”

The only currently defined overrideType is currently “P”, which overrides the position
of the following instruction.

CHAPTER 4. INSTRUCTION REFERENCE 55

OP3

Zyx - thinks good for M as well...look-up I

4.5.9 DSA Query

&DSAINFO@
... objectID = ...dsaType dsaState, paramA, paramB

Return information about the specified DSA instance.
If not a valid DSA, the dsaType is -1.

What are the valid values of dsaType? I

4.6 Message Passing

messageDelay ::={ integer | “X” | “Y7 } .o (default is 0)

e X = parameter A
e Y = parameter B
messageAction ::=*“S” | “C” | “T”
messageType ::=“N" | messageActionccoiiiiiiiiiinann. (default is “S”)
¢ N = do nothing
e S =set
e C =clear
e T = toggle
messagePos ::={0-3}

messageColumn ::=messageAction messagePos (default is “S0”)

messageTarget ::="A” | “B” | absLocation.................c.cooiiiieann. (default is “A”)

CHAPTER 4. INSTRUCTION REFERENCE 56

4.6.1 Standard Message

“M” [messageDelay] messageType [messageTarget]

=

Sends a message, after the specified delay, of the given type to messageTarget.

M

4.6.2 Standard Message (Indirect)

“M” [messageDelay] messageType “*”

... cellLocation =

Sends a message with the target cellLocation specified as an operand (i.e. read from
the stack).

4.6.3 Message

&MESSAGE

... cellLocation, messageType, num, delay =

Sends a message with all inputs as operands. Additionally allows passing of integer
values along with the message to the target.

The number of these additional values is specified by num (up to 29). Before passing
the message, these values are set-up via &PARAM! (4.21.3). The receiver fetches them
via &PARAMQ (4.21.2).

Zyx Notes:

"The number of these additonal values is specified by num (up to 29). Before passing
the message, these values are set-up via &PARAM!" they must be set from index O
of &PARAM!, so the user must be careful not to erase conflctualy the parameters of
the filter if the Message is sent from a filter. Solutions: make a copy of the filter’s
parameters and restore them after the Message is sent, or directly store the filter’s
parameters with an index > O.

CHAPTER 4. INSTRUCTION REFERENCE

4.7 Stack Manipulation

4.7.1 Drop

57

&DROP

X =

Discards the top element of the stack.

4.7.2 Drop 2

&2DROP

LT,y =

Discards the top two elements of the stack.

4.7.3 Swap
&SWAP
LTy = .Y, T

Swaps (reverses) the order of the top two stack elements.

4.7.4 Over
&OVER
T, Y = ... T, Y, T

Push a copy of TOS(1).

CHAPTER 4. INSTRUCTION REFERENCE

4.7.5 Duplicate

&DUP

.r = ...z,

Duplicates the top element of the stack.

4.7.6 Duplicate 2

&2DUP

.,y = ... T,Y, T,y

Pushes copies of the top two stack elements.

4.7.7 Pick

&PICK
..n = ...TOS(n)

Pushes a copy of the n'" stack element.

4.7.8 Pick 2

&PICK2

XY, 2 = .. T, Y, 2, X

Push a copy of TOS(2).

4.7.9 Poke

CHAPTER 4. INSTRUCTION REFERENCE 59

&POKE

.valuen =

Pops n and value, then replaces T0S (n) with value: TOS(n) = value

4.7.10 Roll

&ROLL

.n =

Moves the n'* stack element to the top, all elements between n and TOS are shifted
down one position.

4.7.11 Unroll

&-ROLL

.n =

Moves the element at TOS to the n'"* stack element, all elements between n and TOS
are shifted up one position.

4.7.12 Rotate

&ROT

XY, 2 = . Y, 2, T

Rotates the top three elements by bring the third to the top and moving the other two
down one position.

CHAPTER 4. INSTRUCTION REFERENCE

4.7.13 Unrotate

60

&-ROT

XL Y, R = L2 Y, T

Rotates the top three elements.

4.8 Array Access

Instructions which directly manipulate the Array (2.4.3).

4.8.1 Array Get

&0

.n = ...array[n]

Returns the n!'* array element: pushes array[n]

4.8.2 Array Set

&!

. value, n =

Sets the n'" array element to value: array[n] = value

4.9 Parameter Access

Instructions which directly manipulate Parameters (2.4.1).

CHAPTER 4. INSTRUCTION REFERENCE 61

4.9.1 Parameter Set

“S" parameter

. value =

Sets the specified parameter (2.4.1) to the given value.

4.9.2 Parameter Get

Pushing the value of a parameter (2.4.1) is accomplished with load instruction (4.5.2).

4.10 Global Variables

Instructions which directly manipulate Global Variables (2.4.4).

4.10.1 Global Get

GV’ n"@"

= ... value

Pushes the value of the n'* global variable (global[n]) on the stack.

4.10.2 Global Set

‘GV' n "

. value =

Sets the value of the n'" global variable to value: global[n] = value

CHAPTER 4. INSTRUCTION REFERENCE 62

4.11 Temporary Variables

Instructions which directly manipulate Temporary Variables (2.4.5).

4.11.1 Variable Get

V' n Q"

= ... value

Pushes the value of the n'" variable no the stack: PUSH(tempV ar[n])

4.11.2 Variable Set

Hvll n u!n

. value =

Sets the value of the n'" variable to value: tempV ar[n] = value

4.12 Binary Operators

Binary Operators consume two operands from the stack and return (push) one result.

4.12.1 Arithmetic

4.12.1.1 Addition

&+

http://en.wikipedia.org/wiki/Binary_operation

CHAPTER 4. INSTRUCTION REFERENCE 63

4.12.1.2 Multiplication

&*

.,y = ... XTkY

4.12.1.3 Division

&/

.,y =

< |8

NOTE: division by zero will cause the game to terminate with an error message box.

4.12.1.4 Remainder

&%
cxyy = 2%y

NOTE: division by zero remainder will cause the game to terminate with an error
message box.

4.12.2 Bitwise

Bitwise

4.12.2.1 Shift Right Arithmetic

&RSHIFT

LT,y = L. XY

Performs a signed (or arithmetic) right shift of x by y bit positions. If y is negative, a
left shift is performed by —y positions.

NOTE: For hardware portability the number of bit positions (y) is masked by 31.

http://en.wikipedia.org/wiki/Bitwise_operation
http://en.wikipedia.org/wiki/Arithmetic_shift

CHAPTER 4. INSTRUCTION REFERENCE 64

4.12.2.2 Shift Left

&SHIFT

LTy = L x<<yYy

Performs a left shift of x by y bit positions. If y is negative, a signed right shift is
performed by —y positions.

NOTE: For hardware portability the number of bit positions (y) is masked by 31 (SEE:
(4.12.2.1))

4.12.2.3 Bitwise AND

&AND

Performs a bitwise AND on the two operands.

4.12.2.4 Bitwise OR

&OR

L,y = Looxly

Performs a bitwise OR on the two operands.

4.12.2.5 Exclusive OR

&XOR

Performs an XOR on the two operands.

http://en.wikipedia.org/wiki/Logical_shift
http://en.wikipedia.org/wiki/Bitwise_operation
http://en.wikipedia.org/wiki/Bitwise_operation
http://en.wikipedia.org/wiki/Bit_xor

CHAPTER 4. INSTRUCTION REFERENCE

4.12.3 Logical

4.12.3.1 Logical AND

65

&LAND
Lo,y = . &y

4.12.3.2 Logical OR

&LOR

LT,y = ..ozlly

Foo

4.13 Unary Operators

Unary operators modify the value at the top of the stack.

4.13.1 Negate

&NEG

4.13.2 Logical NOT

&NOT

L = ... \z

4.13.3 Decrement

http://en.wikipedia.org/wiki/Unary_operator

CHAPTER 4. INSTRUCTION REFERENCE 66

&1-

Lx = ...x—1

The value at TOS is decreased by one.

4.13.4 Increment

&1+

.x = ...x+1

The value at TOS is increased by one.

4.13.5 Ones Complement

&COMP

Performs a bitwise not.

4.13.6 Bit Count

&BITCOUNT

.x = ...Dbitcount(x)

Returns the number of bits in x which are set (are “1”). Also known as the Hamming
weight.

4.14 Comparison Operators

Boolean results map to 1 for true and 0 for false.

http://en.wikipedia.org/wiki/Bitwise_operation
http://en.wikipedia.org/wiki/Hamming_weight
http://en.wikipedia.org/wiki/Hamming_weight

CHAPTER 4. INSTRUCTION REFERENCE 67

4.14.1 Equals

&=

LT,y = ... X==yY

4.14.2 Not Equals

&=
LYy = .. TH#y

4.14.3 Signed Less-Than

&<

L,y = L. <y

Returns the signed comparison.

4.14.4 Unsigned Less-Than

&U<

L,y = . <y

Returns the unsigned comparison.

4.15 Flow Control

Flow Control instructions allow changing location of where instructions are...

When execution is passed by any of these flow-control instructions, any nextState
specifier at the target location is ignored.

More details on Flow Control instructions are provided ... (5.6).

CHAPTER 4. INSTRUCTION REFERENCE 68

4.15.1 Explicit Branch

“G" [state] [column]

=

Transfers control to the specified state and column.

4.15.2 Explicit Subroutine

“J" [state] [column]

=

Transfers control to the specified state and column. Upon completion, control returns
to the next instruction in the this sequence.

4.15.3 Branch

& J*

... message, state =

Transfers control to the specified.

4.15.4 Call Subroutine

&G*

... message, state =

Control is transferred to the specified. Upon completion, control returns to the next
instruction in the current sequence.

CHAPTER 4. INSTRUCTION REFERENCE 69

4.15.5 Multi-Target

4.15.5.1 Case

“7{" CASE "}"

oo n =

The value n is popped from the stack and compared with values specified by CASE.
Where:
CASE ::={caseElement}+c.cuuiiiiiiiiiinnnnn. (one or more caseElement)
caseMatch ::=integer

caseElement ::= “(* caseMatch “,” state column “)”

If there is a matching value (n equals one of the caseMatch), then control is transferred
to the specified place, otherwise execution continues with the following instruction.

{3}
SEE: XXX

4.15.5.2 If Then Else

"7 IfElse

Lo =

The value n is popped from the stack, if its value is zero it is considered false and
otherwise it is consider true.

IfElse ::={onTrue | onFalse | onTrueOrFalse}
FlowTarget ::={"J” | “G”} [state] [column]

onTrue ::=flowTarget

onFalse ::=":" flowTarget
onTrueOrFalse ::=flowTarget “:” flowTarget
?JC0O:GT1
?:J3T2

SEE: XXX

CHAPTER 4. INSTRUCTION REFERENCE 70

4.16 Object

(4.17.4)
(4.19.8)
4.16.1 Charges
Objects blah, blah...
Weapon remaining charges
Clothing remaining charges
Potion strength
Miscellaneous value

Table 4.1: Object Charges

4.16.1.1 Charges Get

&GETCHARGES
... objectID = ...charges

Returns the number of charges associated with the specified item. Silently returns
zero for invalid input.

SEE: 4.1

4.16.1.2 Charges Set

&SETCHARGES
... objectlD, charges =

Sets the number of charges associated with the specified item. Silently does nothing
for invalid input.

SEE: 4.1

CHAPTER 4. INSTRUCTION REFERENCE 71

4.16.2 Broken

4.16.2.1 Broken Get

&GETBROKEN
... objectID = ... flag

Returns the broken flag associated with the specified item. Silently does nothing for
invalid input.

4.16.2.2 Broken Set

&SETBROKEN
... objectID, flag =

Sets the broken flag associated with the specified item. Silently returns false for
invalid input.

4.16.3 Cursed

4.16.3.1 Cursed Get

&GETCURSED
... objectID = ... flag

Returns the cursed flag associated with the specified item. Silently does nothing for
invalid input.

4.16.3.2 Cursed Set

CHAPTER 4. INSTRUCTION REFERENCE 72

&SETCURSED
... objectID, flag =

Sets the cursed flag associated with the specified item. Silently returns false for
invalid input.

4.16.4 Poisoned

4.16.4.1 Poisoned Get

&GETPOISONED
... objectID = ... flag

Returns the poisoned flag associated with the specified item. Silently does nothing for
invalid input.

4.16.4.2 Poisoned Set

&SETPOISONED
... objectID, flag =

Sets the poisoned flag associated with the specified item. Silently returns false for
invalid input.

4.16.5 Sub Types

4.16.5.1 Subtype Get

&GETSUBTYPE
... objectID = ...subtype

Returns the subtype .

CHAPTER 4. INSTRUCTION REFERENCE 73

4.16.5.2 Subtype Set

&SETSUBTYPE
... objectlD, subtype =

Sets the subtype

4.16.6 Object Type

&TYPE
... objectID = ... typeOfObject

Foo.

4.16.7 Fetch

F
... depth, absLocation, posMask, typeMask =- ... objectID

e depth: The depth of the object in the ’'virtual’ pile of objects. The ’virtual’ pile
consists only of those objects that meet the posMask and typeMask criteria. All
other objects are ignored. The object at the top of this 'virtual” pile is at depth
Z€ero.

e location: The absolute location of the cell to be examined. This includes the
offsets for the level.

e positionMask2.6.4.1: There are four positions in each cell where objects might
be placed. North, East, South, and West for a wall cell. Northwest, Northeast,
Southeast, and Southwest for items in an open cell. These directions are respec-
tively numbered O, 1, 2, and 3. The position mask should have a bit set for each
position to be considered when building the 'virtual’ pile of objects. Bit zero for
position zero and so on. If the positionMask is set to the value negative-one (
-1) then only the one position as described by the location parameter will be
considered.

CHAPTER 4. INSTRUCTION REFERENCE 74

e typeMask: There are several kinds of objects - weapons, potions, chest, etc. See
objectTypes The typeMask should have a bit set for each type of object to be
considered when building the virtual pile of objects. For example, bit 5 (32) for
weapons objects.

e objectID Result - This is the unique object ID for the object found in the virtual
pile of objects. If no object exists at the specified depth then the resulting objectID
will be Oxffff (65535).

"Fetch Object ID", " F(<depth>,", " <absolute location>,", " <position mask>,", " <object
type mask> ... <objectID>)", " Discussion:", " If <position mask> == -1 then use po-
sition of <absolute location>." " <depth> applies only to objects of the proper type at

the" " given positions. Other objects are totally ignored" "—",

4.16.8 Object Spawn

&ADD

... posMask, location, objectID =

This instruction may not be called within a filter (Chapter 3).

This instruction duplicates an object and places it at the specified location (2.6.2).

4.16.9 &OBJECTID

&OBJECTID®@
= ... objectlD

Returns the most recently manipulated object by a previous instruction. As the list of
supported instruction may be extended in the future, this instruction should always
be placed immediately after it for future compatibility.

&ADD
&ADD

CHAPTER 4. INSTRUCTION REFERENCE 75

e add
¢ indirect add
This list of instructions may be expanded in future versions, so to insure forward

compatibility always use this instruction directly after one of those listed.

This information is not carried over from one DSA execution to another.

4.16.10 Object Move

&MOVE
... SOURCE, DESTINATION =

This instruction may not be called within a filter (Chapter 3).
Moves an object from one location in the game to another.

The DSA operation '&MOVE’ can be used to transfer an object form one location in
the game to another. The syntax is:

&MOVE (<source> <destination> . . .)
Where <source> and <destination> have the same syntax, namely:
<source> | <destination> = (locationType objMask positionMask location depth)

Therefore, ten parameters must be placed on the stack before attempting an &MOVE
operation; five for the source and five for the destination. The use of each of the five
parameters is summarized in the following table:

locationType objMask positionMask location/object depth 1 = dungeon cell types of
objects NESW (-1 = use location) location of cell depth in list 2 = Cursor N/A N/A N/A
N/A 3 = Monster possession types of objects N/A Object ID of Monster depth in list 4
= Character possession N/A character index possession index N/A 5 = Chest types of
objects N/A ObjectID of chest depth in list

Some discussion of the various parameter types:

objMask - This is the mask of the object types to be considered for the move operation.
Bit numbers are (5=weapon) (6=clothing) (7=scroll) (8=potion) (9=chest) (10=miscella-
neous). More than one bit may be set. positionMask - When used to designate a

CHAPTER 4. INSTRUCTION REFERENCE 76

position within a dungeon cell then bit O=north, bitl=east, bit2=south, and bit3=west.
If more than one bit is set when used as a cell destination then the position of the ob-
ject will be selected at random from the possibilities allowed. If source posMask is set
to negative one then it means that the position associated with the location parameter
should be used. More than one bit may be set. If destination posMask has no bits
set then the position associated with the location parameter is used. When used as a
character index it specifies which character to use; zero is the leftmost character and
three is the rightmost character in the character portrait area of the playing screen.

location - this is generally the location within the dungeon where the object can be
found. It can be a character index, the ID of a container, or the level, x, y, and
position coordinates of a cell in the dungeon. depth - When an object resides in a
list such as the list of monster possessions then the depth parameter specifies which
of the objects in the list is to be referenced. When searching the list, only objects of
the type specified by objMask and objects in the correct positions as specified by the
positionMask are considered. It is as if the objects not meeting these criteria were
non-existent. For example if a list contained a key, a sword, a potion, and an apple
and the objMask specified only miscellaneous objects then depth zero would pick the
key and depth one would pick the apple. In the destination parameters, depth must
be specified as zero.

Some discussion of the operation: dungeon cell Location is an 18-bit integer; (bitsO-
4 =) (bits5-9 = X) (bits10-15 = level) (bits16-17 = position). You can specify the
same location as both the source and destination. If you do, the depth parameter
of the destination is interpreted after the object is removed from the dungeon cell.
cursor This is the very simplest case. As a source it succeeds if the cursor is full
and as a destination it succeeds if the cursor is empty. You should not specify the
cursor as both the source and the destination. monster or chest A chest can hold
only eight objects and a monster can hold any number. You should not specify the
same chest and monster as both the source and destination. character The location
parameter specifies the location on the character’s body, in his quiver, backpack, etc.
You should not specify the same location on the same character as both the source
and destination. As a source it succeeds if the location is full and as a destination it
succeeds if the location is empty and will accept the object being moved. You cannot
put a helmet on a character’s feet. Sorry.

If the &MOVE fails the Timer Trace will show the status: enum ERRORCODES {
SER_OK = 0, SER_UnknownLocType = 1, SER_NoObjInCursor = 2, SER_IllegalCharacterIndex
=3, SER_lllegalCarryLocation = 4, SER_NoObjectAtCarryLocation = 5, SER_InvalidCellLocation
=6, SER_NoSuchObjectInCell = 7, SER_IllegalMonsterID = 8, SER_MonsterIsNotMonster

=9, SER_NoSuchObjectOnMonster = 10, SER_IllegalChestID = 11, SER_ChestIsNotChest

CHAPTER 4. INSTRUCTION REFERENCE 77

= 12, SER_NoSuchObjectInChest = 13, SER_ChestBelongsToCharacter = 14, DER_OK

=0, DER_UnknownLocType = -1, DER_IllegalCharacterIndex = -2, DER_IllegalPossessionIndex
= -3, DER_PossessionSlotNotEmpty = -4, DER_IllegalObjectForCarryLocation = -5,
DER_CursorNotEmpty = -6, DER_InvalidCellLocation = -7, DER_IllegalDepth = -8,

DER IllegalChestID = -9, DER_ChestIsNotAChest = -10, DER_ChestBelongsToCharacter
=-11, DER_ChestlsFull = -12, DER_IllegalMonsterID = -13, DER_MonsterIsNotAMonster

=-14 };

4.16.11 Cloud Create

&CREATECLOUD

... cellLocation, type, size =

This instruction may not be called within a filter (Chapter 3).

The operand type may be any of the following:

FIREBALL | O
DISPELL 3
OPENDOOR | 4
POISON 7
DEATH 40
FLUXCAGE | 50

Table 4.2: Cloud Types

4.16.12 Missiles

4.16.12.1 Missile Info Get

&MISSILEINFO®@

... objectID = ... contents, range, damage, direction

Foo

CHAPTER 4. INSTRUCTION REFERENCE 78

4.16.12.2 Missile Info Set

&MISSILEINFO!

... range damage direction, objectID =

Foo

4.17 Monster

4.17.1 Monster Delete

&DELMON

... cellLocation, index =

This instruction may not be called within a filter (Chapter 3).
Deletes a single monster within a group. Cannot delete the last.

The operand index is index of the monster in the group. (0 to numberOfMonsters-1)

4.17.2 Monster Insert

&INSMON

... cellLocation, monPosMask =

This instruction may not be called within a filter (Chapter 3).
Inserts a single monster into an existing group. It cannot create a new group.

The operand monPosMask is a mask of positions that the new member can occupy.
Use 15 to allow any position.

CHAPTER 4. INSTRUCTION REFERENCE 79

4.17.3 Monster Variables

Number of monsters in the group read-only
Monster type
Hit points 1% in group
Hit points 2"¢ in group
Hit points 3"¢ in group
Hit points 4 in group
flags: 1=invisible, 2=drawAsSize4, 4=Unique, 8=Poisoned
Alternate Graphic number

N OOl | W N = O

Table 4.3: Monster Variables

4.17.3.1 Monster Variable Get

&MONSTERG®

... ID, index, num =

Get/Set information about a group of monsters. (ID index num ...)

e ID is the identification number of the monster group.
e index is the address within the array where the information should be placed.

e num is the number of words of information that should be retrieved.

NOTE: These flags only work if you have 'Enabled Extended Monster Flags' in the
'Edit/Global’ dialog.

4.17.3.2 Monster Variable Set

&MONSTER!

... monsterID, index, num = ... objectID

This instruction may not be called within a filter (Chapter 3).

&MONSTER! cannot change the number of monsters or the monster type. Only the
HitPoints and flags will be modified.

CHAPTER 4. INSTRUCTION REFERENCE 80

4.17.4 Monster Possession

&MONPOSS

... monsterID, index =- ... objectID

Gets a monster possession.

4.17.5 Monster Movement Filter

4.17.5.1 Monster Block Move

&MONBLK

... directionMask =

This instruction may only be called within a Monster Moving (3.12) filter.

4.17.5.2 Monster Location and Distance

&MONL&D

Lo n =

This instruction may only be called within a Monster Moving(3.12) filter.

Gets the monster’s location and distance to the party and puts the two numbers in
the Temporary Variable Array (2.4.5).

tempVar[n+0] monster’s location 1024 level + 32 x + y
tempVar[n+1] | neighborDistance to party (2.3)

Is the storage location correct? I

CHAPTER 4. INSTRUCTION REFERENCE 81

4.18 Cells

4.18.1 Cell Flags

These are variable length based on the type of the cell. The first value contains the
ordinal of the type and is read-only.

4.18.1.1 Cell Flag Types
Type O - Wall (Closed Cell)

1. bits flags (writeable): posMask (2.6.4.1) for wall random decorations.

Type 1 - Floor (Open Cell)

1. bit flags:
| 1 | random floor decorations | rw |

Type 2 - Pit
1. bit flags:
1 | false pit cannot fall through ™
4 | obscure | hard to see even when open | rw
8| open the pit is open ™
Type 3 - Stairs
1. bit flags:
4 up they lead up. r

8 | north/south | enter from north or south | r

CHAPTER 4. INSTRUCTION REFERENCE

Type 4 - Door

1. bit flags:
1 north/south r
2 opens up/down | rw
4 switch ™w
8 fireball damages | rw
16 axe damages 'w

2. current open/closed state:
open
closed
closed
closed

closed

bashed

|+

| =

N[OV)

O b WIN|—= O

3. door type index (add link)

4. door decoration ordinal (add link)

Type 5 - Teleporter

1. bit flags (w):
4 | visible
8 | active

2. orientation change on teleport (w):
0 none
turn right

turn to opposite

turn left

set to N

set to E

set to S

set to W

N O O x| W N =~

CHAPTER 4. INSTRUCTION REFERENCE 83

3. what gets teleported (w):
0 items

1 monsters

2 | party & items
3 | everything

4. destination cell (r).

Type 6 - Removeable Wall

1. bit flags (w):
1 | trick wall (passable)
4 invisible

4.18.1.2 Cell Flags Get

&CELLGO

. cell Location, index, num =

Gets num cell flags and stores the values starting at index in the array.
The sequence:
LA L10 L3 &CELL®

therefore inspects the cell at the location stored in parameter-A and stores the first
three parameters in the array starting at index 10.

4.18.1.3 Cell Flags Set

&CELL!

. cell Location, index, num =

This instruction may not be called within a filter (Chapter 3).

This is used to modify the specified cells flags.

CHAPTER 4. INSTRUCTION REFERENCE 84

4.18.2 Extended Cell Flags

What are the extended cell flags? I

4.18.2.1 Extended Cell Flags Get

&ECFQ@

... cellLocation = ... flags

Gets the extended flags of the specified cell (2.6.1).

4.18.2.2 Extended Cell Flags Set

& ECF!

... flags, cellLocation =

Sets the extended flags of the specified cell (2.6.1).

4.18.3 Teleporter Copy

“CT'<to><from>

=

Foo

4.18.4 Generator Delay

The delay (generatorDelay) is the amount of time that a Monster Generator is disabled
after being triggered. When a Monster Generator is triggered, it creates a monster,
a Timer message and then disables itself. When the Timer message arrives, it turns

CHAPTER 4. INSTRUCTION REFERENCE 85

the disabled actuator back into a Monster Generator. So, during that time there is no
Monster Generator present. If you want a DSA at the same location as the Monster
Generator to determine whether or not the generator is present then you must be
sure that the DSA comes before the Monster Generator in the list of items in the Cell.
Otherwise, the generator will have disabled itself (and disappeared from view) before
the DSA has had a chance to perform its magic.

The value generatorDelay is 8 bits in length and is encoded so as to allow for very long
delays. Values of 1 through 127 are mapped to the delays of 1 through 127. The delay
associated with values of 128 through 255 are determined by the function:

generator Delay = 64(value — 126) 4.2)

So that the maximum delay is 64(255 - 126) = 8256 = about 23 minutes.

4.18.4.1 Generator Delay Set

&GENERATORDELAY!

... generatorDelay, cellLocation =

Sets the delay of the generator at the specified location (2.6.1).

If the location contains no generator then it searches for an actuator that has been
disabled and, if one is found, we assume that it is a disabled Monster Generator and
set its delay value. If either are found, then the instruction silently does nothing.

4.18.4.2 Generator Delay Get

&GENERATORDELAY®

... cellLocation = ... generatorDelay

Gets the delay of the generator at the specified location (2.6.1). Returns -1 if there is
no generator.

CHAPTER 4. INSTRUCTION REFERENCE 86

4.18.5 Neighbors Inspect

&NEIGHBORS

... cellLocation, criteriaMask = ... result

Determine type and contents of cell’s neighbors.

This instruction examines the four neighbors of a cell and sets a bit in the result for
each that meet the criteria described by the criteriaMask.

This instruction might be useful to determine an escape route for the party, for exam-
ple.

Bits in the result are: bit O - North bit 1 - East bit 2 - South bit 3 - West
The criteriaMask is divided into three sections:
1 - type of cell - bits a through b 2 - contents of cell - bits ¢ through d

In order for a bit to be set in the result, the cell must match at least one bit in the
‘type of cell’ section and at least one bit in the ‘contents of cell’ section.

The "Type of Cell Bits’ are

bit O - Cell outside the dungeon (seen as a stone wall)
bit 1 - Solid stone wall

bit 2 - Real pit - open

bit 3 - Real pit - closed

bit 4 - False pit - cannot fall through

bit 5 - Door - open

bit 6 - Door - mostly open

bit 7 - Door - half open

bit 8 - Door - mostly closed

bit 9 - Door - closed

bit 10 - Door - smashed

bit 11 - Teleporter (objects only) active
bit 12 - Teleporter (objects only) inactive

CHAPTER 4. INSTRUCTION REFERENCE

bit 13 - Teleporter (party/objects) active
bit 14 - Teleporter (party/objects) inactive
bit 15 - Teleporter (monsters only) active
bit 16 - Teleporter (monsters only) inactive
bit 17 - Teleporter (anything) active

bit 18 - Teleporter (anything) inactive

bit 19 - Open

bit 20 - Trick Wall visible but passable
bit 21 - Trick Wall visible and impassible
bit 22 - Trick wall invisible and passable
bit 23 - Stairs up

bit 24 - Stairs down

The 'Contents of Cell’ bits are:

bit 31 - Empty of monster or party

bit 30 - Occupied by monster

bit 29 - Occupied by party

87

Example. Suppose you want to know in which direction the party could proceed
without falling through a pit or being teleported or moving to a different level. The
criteriaMask should have the following bits set: bits 3 and 4 - a safe pit. bits 5 - an
open door bits 11, 12, 14, 15, 16, and 18 - inactive/nonparty teleporters bit 19 - an

open cell bits 20 and 22 - a passable trick wall bit 31 - No monster is there

4.18.6 Cell Inspect

& THISCELL

... cellLocation, criteriaMask = ... result

This instruction is the same as (4.18.5), except that it only examines the specified cell

(2.6.1) location. As such only bit O of the result is used.

CHAPTER 4. INSTRUCTION REFERENCE 88

4.18.7 Location Decode

&LOC2ABSCOORD

... cellLocation = ...level, x, y, pos

Decodes a cellLocation (2.6.1) into absolute coordinates, including level offsets.

4.18.8 &THROW

&THROW

=

This instruction may not be called within a filter (Chapter 3).

Throw a missile, either an object or a spell. (type objectLocation launchLocation di-
rection range damage delta ...) If 'type’ is zero then an object is fetched from ’object-
Location’. Other values of type are:

-128 Fireball -127 Poison -126 Lightning -125 Dispell -124 Zo Spell -122 Poison Bolt -
121 Poison Cloud -88 Monster Death (whatever that is!) 'objectLocation’ includes a cell
location and position 'launchLocation’ includes a cell location and position 'direction’
0=N; 1=E; 2=S; 3=W ’'range’ is how far the missile will travel before falling 'damage’
is the amount of damage done by the missile ‘delta’ is what is subtracted from range
and damage each step.

4.19 Party and Characters

4.19.1 &ISCARRIED

&ISCARRIED
... charAnylD, objectID = ... result

CHAPTER 4. INSTRUCTION REFERENCE 89

(char# objectID . . . (location or number>) Searches one or more characters for an
object.

&ISCARRIED (char# ID . . . <number or position>)

" &ISCARRIED (<char num> <id or -type> ... <location or number>) ; Is item being
carried?",

Makes a complete search a character’s inventory. The search is recursive. That is
chests are searched and any monsters found in the chests are searched and any
possessions of those monsters are searched, etc. The search includes the cursor if
the leader is included in the search.

char#: 0-3 to choose one of the character, 4 for the leader, 5 for the whole party

Non-negative ID is the identifier for a particular object. For example, a particular
apple....the one found in the northern corner of the supplies area. In this case the
return value is -1 or the character number and the location on that character where
the item is carried. These are encoded as 256*char + pos. If the object is found in the
cursor then the position is 255. See BODY POSITIONS at ObjectTypeConstants.

If ID is negative then it represents an object type. For example any apple. In this case
the return value is the number of items of type -ID being carried by that character.
The object types are those defined by the enumeration OBJECTTYPE at ObjectType-
Constants. Two caveats:

e Some objects have more than one type number. Torches are an example. There
are several types of torches, depending on the brightness of the torch. Compass
is another example having several directions. In such cases only the 'Basic Object
Type’ (the first listed) is used. &ISCARRIED will never find a ’torch-b’. ALL
TORCHES are of type torch_a for the purposes of &ISCARRIED.

e Notice that the 'basic object type’ of a compass is zero! Negative zero does not
look very negative in twos-complement arithmetic. THEREFORE . . . This is a
special case. You must use negative one to search for compasses.

4.19.2 Party Management

&SWAPCHARACTER

... charlID, fingerprint = ... result

CHAPTER 4. INSTRUCTION REFERENCE 90

This instruction allows adding, removing and swapping of the characters in the party.

A character is removed by specifying a fingerprint of -1 and setting charID to the slot
of the character to remove. The last member of the party cannot be removed. The
removed character is placed in the wings and the rest of the characters slide left to fill
in the empty space.

To add a character to the party from the wings one specifies an charID of -1 and the
Jingerprint of the desired character. The character will be put into the first empty slot
in the party. A fifth character may not be added.

To swap an active party member with one in wings one specifies the desired charID of
the outgoing member and the appropriate fingerprint of the incoming.

When a character is placed in the wings, all his possessions and statistics are saved
with him.

The following table specifies the returned result:

success
Attempt to remove last party member.
Attempt to add a fifth party member.
Reference to a character not in the wings.

> WINO

Table 4.4: Party Management Results

For all error results (those other than zero), the state of the game is left unmodified.
SEE: fingerprint (2.6.5.2)

4.19.3 Party Distance

&PARTYDISTANCE

... cellLocation = ... distance

Returns the distance of the party from the specified location (2.6.1).

If the location is on the same level as the party then the result is the Manhattan
distance (2.6.3), otherwise it is the negative number of level differences.

CHAPTER 4. INSTRUCTION REFERENCE 91

4.19.4 Party Variables

| n || Variable | Notes
O || Party size, including dead
1 || Party level
2 || Party position x 1
3 || Party position y 1
4 || Party facing. (2.6.4)
5 || Party is sleeping 2,3
6 | Can see through walls 2,3
7 || Has magic footprints active | 2,3
8 || Index of the party Leader
9 || Invisible 2,3
10 || Fireshield value
11 || Spellshield value

Table 4.5: Party Variables

1. Does not include the offset.
2. Read-only value ????

3. Values other than zero indicate true.

4.19.4.1 Party Variable Get

&PARTYQ

...index,n =

Reads the first n party variables (4.5) and places the results in the array starting at
offset index.

CHAPTER 4. INSTRUCTION REFERENCE 92

4.19.5 Character Variables

| n [Variable | Store range | | Notes
0 Facing -
1 Food [—1023, 2048]
2 Hit Points 0, Max]
3 Load -
4 Mana [0, 900]
5 Ouches -
6 Position -
7 Shield Strength -
8 Stamina 0, Max]
9 Water [—1023, 2048]
10 Luck - 1
11 Strength - 1
12 Dexterity - 1
13 Wisdom - 1
14 Vitality - 1
15 Anti-Magic - 1
16 Anti-Fire - 1

17-56 || Skills (2.6.5.3)

57 fingerprint of character - (2.6.5.2)
58 32-bit mask of talents full range

Table 4.6: Character Variables

1. Encoded as four eight-bit values: zero, minimum, maximum, current:

results

results[17]

result[57]

31 24 23 16 15 8 7 0

min max current

[10] through [16] are encoded in four 8-bit bytes: zero, minimum, maxi-
mum, current result[10] = Luck

through [56] are two words for each of the 20 skills. O and 4-7 =Fighter 1
and 8-11 =Ninja 2 and 12-15=Priest 3 and 16-19=Wizard

= fingerprint of character (bottom 16 bits of location of defining text)

CHAPTER 4. INSTRUCTION REFERENCE 93

result[58] = *32-bit mask of talents (actually can be used for any purpose the de-
signer pleases!)

4.19.5.1 Character Variables Get

&CHARQ

... partylD, index, n =

&CHAR@ (char# index n ...) char# O to 3 (or 4 to indicate the 'Lead Character’)
index = where to put result in array n = number of variables to fetch Fetch variables
associated with a single party member. See Character Fetch

char# O to 3 (or 4 to indicate the 'Lead Character’) index is where to put results in
array (or where the new values are) n is number of variables to fetch (or number to
store)

Stores the first n character variables (4.19.5) of

4.19.5.2 Character Variable Set

&CHAR!

... partylD, index, n =

This instruction may not be called within a filter (Chapter 3).

Exactly the same a &CHAR®@ except that the values you provide are used to modify
the character’s attributes. Only a few of the values are actually used but the format
and order is the same so that you can do the &CHAR®@, modify some of the variables,
and then do the &CHAR!.

The table indicates which variables are modified by this instruction.

4.19.6 Character Location

CHAPTER 4. INSTRUCTION REFERENCE 94

&WHEREISCHAR

... fingerprint = ... result

Returns the location of the character with the specified fingerprint (2.6.5.2).

If there is an active party member with the given fingerprint, then the index (2.6.5.1)
of the first found is returned. Otherwise if there is a matching character within the
wings (4.19.2) then the result is 5 and finally a result of 4 indicates that none was
found.

4.19.7 Character Name

&CHARNAME®

... fingerprint, index =

Sets textString[index] to the name of the character with the specified fingerprint (2.6.5.2).
If no such character exists, the string is set to empty.

4.19.8 Character Possessions

& CHPOSSQ
... partylD, index = ... objectID

<char num> = 0 to 3; <index = 0 to 29>", " <char num> == 4 means ’Active Character™,
" <char num> == -1 means object in cursor",

4.19.9 Character Skills

SEE: Skills (2.6.5.3)

CHAPTER 4. INSTRUCTION REFERENCE 95

4.19.9.1 Skill Adjustement Parameters

&SETADJUSTSKILLSPARAM
... p4, p5, p6, p7, p8 =

Sets the designer configurable parameters for next Skill Adjust Filter (3.2) call.

IS THIS CORRECT?
When a dungeon is loaded, the values which will be sent to the filter are initialized to
zero. After a call to this instruction the values specified will be retained until another
call of this instruction is issued.

4.19.9.2 Give XP

&EXPERIENCE+
... charlD, skilUD, amount =

Increases the character’s (2.6.5.1) XP total of the specified skill (2.6.5.3) by amount.
If the specified skill is a secondary (hidden) skill, then its associated primary skill
is increased by the same amount. If the primary skill moves over a mastery level
boundary, level gains are applied.

Silently does nothing if invalid character or skill.

4.19.9.3 Level of Mastery

&MASTERY
... charlD, skillID, flags = ... level

Returns the character’s level of mastery in the specified skill .

The operand flags is composed of the following bit values:

1 don’t include item effect
2 | don’t include temporary effects

CHAPTER 4. INSTRUCTION REFERENCE 96

The sequence:
LO L5 L3 &MASTERY

will return the left most character’s (LO) mastery in thrust (L5) excluding any modifiers
from items and temporary effects (L3, which is 1 logically OR 2).

4.19.10 &WHOHASTALENT

&WHOHASTALENT

...talentMask = ... characterIndexMask

Find all characters within the party who have the given combination of talents. (
talentMask . . . characterIndexMask) Each character has an associated 32-bit mask
of talents that is defined when the character is reincarnated or resurrected. This mask
can be examined/changed using &CHAR@ and &CHAR!.

This function sets the associated bit (bit O to bit 3) of the result for each character who
has all the talents specified by the talent parameter. So you can ask which characters
have a combination of "TreeClimbing’ and 'AxeSpell’, for example. If you want to find
which characters have EITHER of two talents, you could form the bitwise 'or’ of the
result of two &WHOHASTALENT function calls.

4.19.11 Poison

& CAUSEPOISON

... poisonValue, charID =

This instruction may not be called within a filter (Chapter 3).

4.19.12 Teleport Party

& TELEPORTPARTY

... cellLocation =

CHAPTER 4. INSTRUCTION REFERENCE 97

This instruction may not be called within a filter (Chapter 3).
Moves the party to the specified location (2.6.1).

4.19.13 Level XP Multiplier

&MULTIPLIER®@

... level = ...result

Returns the experience point multiplier of the specified level. If the level does not
exist, the result is one.

4.20 Effects

4.20.1 Color Palette

&PALETTE

... unused, unused, overlayNum, density =

sfasdf
The density operand takes an integer on [0,100].

4.20.2 Sound Play

&SOUND

... soundNum, attenuation, flags =

Plays an internal or custom sound.

In the case of custom sounds it must be a standard wave file in 8-bit mono at 11025
samples per second. The operand soundNum is the graphic number of the file in

CHAPTER 4. INSTRUCTION REFERENCE 98

CSBgraphics.dat. The attenuation is a divisor. Set it to 1 for full volume. Setting it to
100 makes it almost inaudible.

The operand flags is not used and should be zero for forward compatibility.

To play an internal sound you specify the negative of the internal sound number
(2.12). In this case, volume is O for low volume and 1 for high volume. This is
normally used to make the sounds quieter when the source of the sound is far from
the party.

The global sound volume setting is always applied.

4.20.3 Text

WAY TOO LITTLE INFORMATION HERE '

4.20.3.1 Display Cell Text

&SAY

... cellLocation, color =

Displays the text from the specified cell location (2.6.1) in the scrolling text area.

4.20.3.2 Display FOO text

& TEXTSAY

... index, color =

Displays textString[index] in the scrolling text area.

4.20.3.3 Clear Text

CHAPTER 4. INSTRUCTION REFERENCE

99

&DISCARDTEXT

=

Clears the text scrolling area.

4.20.3.4 Text Get

&TEXTQ

... object, index =

C

4.20.3.5 Global Text

&GLOBALTEXT!

... index, globalndex =

globalText[globalndex] = textString[index]

4.20.3.6 Describe Object

&DESCRIBE

... location, index, color =

This instruction may only be called within a Viewing Filter (3.6).

The instruction is used to manipulate the PhraseMask and the text associated with
any of the eight phrases that can be printed when an object is 'viewed’. The syntax is:

&DESCRIBE (location index color. . .) ’index’ is zero through seven
eight phrases is being modified. 'location’ can be one of three things:

which of the

CHAPTER 4. INSTRUCTION REFERENCE 100

minus 1 - This means that the phrase should be printed using the current text. The
appropriate bit in the PhraseMask will be set. minus 2 - This means that the phrase
should be disabled. The appropriate bit in the PhraseMask will be cleared. a dungeon
location (including the position within the cell). This means that the text at that
location and position in the dungeon will be displayed. The appropriate bit in the
PhraseMask will be set. ’color’ is the color that the text will appear. The parenthesized
list of phrases all will appear in the same color. There are six possible phrases that
can be printed within the parentheses. The last of these that is actually printed will
determine the color of the entire list. The last two of the eight phrases (Index 6 and
index 7) can each be set to its own individual color. So, altogether, only three colors
can appear at one time.

4.20.4 Savegame Control

&DISABLESAVES

... value =

Saving of games is enabled if value is zero, otherwise disabled.

4.21 Indirect

4.21.1 &%INDIRECT

&%INDIRECT

&%INDIRECT
= ... objectID

4.21.2 Parameters Get

CHAPTER 4. INSTRUCTION REFERENCE

101

&PARAM®@

... num, index =

Fetches num parameters from tempVar[index].

4.21.3 Parameters Set

&PARAM!

... num, index =

Stores num parameters tempVar|index].

4.21.4 Delay

&%DELAY

...time =

Delays the next executed indirect action.

4.21.5 Cast

&CAST

=

Cast spell using the previously stored parameters.

4.21.6 x

CHAPTER 4. INSTRUCTION REFERENCE 102

&FILTEREDCAST

=

Cast spell (with filtering) using the previously stored parameters.

Chapter 5

Explanations

The goal of this chapter is to provide some “brush strokes”....

5.1 Basics

asdf

5.1.1 Understanding Integers

The introduction states that “DSAs operate solely on 32-bit integer data”. Let us break
that down.

5.1.1.1 Switches and Bits

One of the fundamental components used to build computers is a switch, which is
really no different from a simple mechanical switch, and has two positions or states:
on/off, true/false and 0/ 1 are possible ways to describe that state.

Now let us imagine that we group together three sets of these switches:

The first with one switch, the second with two and the third with three, and will come
up with all possible combinations of off/on that each of them can collectively have.
We will write off as O and on as 1:

103

CHAPTER 5. EXPLANATIONS 104

Switches Each possible state
1 0,1 2 2 2!
2 00, 01, 10, 11 4| 2*%2 |22
3 000, 001, 010, 011, 100, 101, 110, 111 | 8 | 2*2*2 | 2°

Table 5.1: Number of switch combinations

Notice that with one switch, it’s either off or it’s on, so it can have two different states
(or values). Increasing the number of switches to two increase the number of possible
combinations to four. With three switch the number of combinations increases to
eight. This generalizes to each time we increase the number of switches in the group
by one, the number of possible combinations double.

It is exactly in this manner than computers store (and also manipulate) information.
The switches are called bits. Going back to our original statement: “DSAs operate
solely on 32-bit integer data”, the “32-bit” part means we are grouping together 32 of
these bits to consider collectively. Notice that this collection can form 232 = 4294967296
unique combinations!

5.1.1.2 Integers

Integers to mathematicians are the natural numbers (1,2,3...), the negative of the
natural numbers and zero. Computers however cannot deal with this mathematical
ideal since we only have a limited number of bits at our disposal, specifically for us
we are limited to collections of 32 bits.

The normal

19042 =1 x 10° +4 x 102 + 9 x 10" + 4 x 10°

NOTE: XXX. For example, under Windows the standard Calculator accessory allows
XXX. Click the view tab and select Scientific. XXX (The GNOME accessory gcalctool)

5.1.1.3 Negative integers

Up to now we have only considered positive numbers. So what about negative num-
bers? Two’s complement.

http://en.wikipedia.org/wiki/Binary_digit
http://en.wikipedia.org/wiki/Two%27s_complement

CHAPTER 5. EXPLANATIONS 105

5.1.1.4 Hexidecimal numbers

Generally our brains do not deal well looking at numbers in binary form and they
make for very long sequences when written out, consider the decimal number 456085838
in binary form is:

11011001011110101000101001110

blah, blah, blah:

0001 1011 0010 1111 0101 0001 0100 1110
blah, blah:

0x1B2F514E

The first part “Ox” is simply one of the standard methods to inform the reader that the
number is in hexidecimal format and has no meaning outside of that.

Dec | Hex | Bin Dec | Hex | Bin Dec | Hex | Bin Dec | Hex | Bin
0 0 0000 4 4 0100 8 8 1000 12 C 1100
1 1 0001 5 5 0101 9 9 1001 13 D 1101
2 2 0010 6 6 0110 10 A 1010 14 E 1110
3 3 0011 7 7 0111 11 B 1011 15 F 1111

Table 5.2: —

5.1.1.5 Enumerations

These XXX

5.1.1.6 Bit flags

Let us not forget that these 32-bit integers are just a collection of 32 switches. XXX

31 1817 16 15 10 9 5 4 0

POs level X y

w

Table 5.3: Cell Location Format

CHAPTER 5. EXPLANATIONS 106

5.1.2 Instances

One of the standard items in the game is a dagger. Now there may be more than one
dagger in the game, but they all share the same basic properties, such as the icon used
and the set of actions the hero can perform with it. Inside the game is a defination of
all the common properties that all daggers have. The actual dagger item that a hero
can use and manipulate is called an instance of that defination. This instance knows

that it is a dagger and stores all the particular information which makes it unique
from every other dagger in the game.

DSAs are logically game items which the hero cannot see or move around. Design-
ers make their definitions by the programming model and places instances of these
definations inside the dungeon like any other game item.

5.2 Memory

asdf

5.2.1 Parameters

asdf

5.2.2 Manipulating the Stack

asdf

5.3 Messages

5.4 Bitwise Operations

The instructions which are called bitwise XXX

CHAPTER 5. EXPLANATIONS 107

5.5 Instruction Reference

Each instruction in the reference chapter starts with box which contains two pieces
of information:

1. How the instruction is actually written.

2. How the instruction modifies the stack.

An example of an easy instruction is a follow:

&2DROP

T,y =

So to tell the DSA to perform this operation one simply writes: &2DROP in the appro-
riate place in the sequence.

XXXX

5.5.1 Understanding Expressions

Instructions which are not written in a fixed manner XXX
messageDelay ::={ integer | “X” | “Y7 } .o (default is 0)

This reads that valid messageDelay element is exactly one of the following: an integer,
the letter “X” or the letter “Y”. It also states than when messageDelay is an optional
element and it that element is not specified, then it is equivalent to having using the
integer zero.

So for an imaginary instruction defined as:
“BAR” [messageDelay]

The all of the following are valid instructions:
BAR BARO BAR123 BARX BARY

where the first two are identical.

CHAPTER 5. EXPLANATIONS

5.6 Flow Control

The various flow control instructions ...

The sequence:
LA LO G23 ...

108

Appendix A

Foo

OO N| OO x| W N~ O

Table A.1: Pressure Pad Types

109

0 10 20 30 40
1 11 21 31 41
2 12 22 32 42
3 13 23 33 43
4 14 24 34 44
5 15 25 35 45
6 16 26 36 46
7 17 27 37 47
8 18 28 38 48
9 19 29 39 49
Table A.2: —

Appendix B

ASDF

110

List of Figures

111

List of Tables

2.1 Cell Location Format 15
2.2 Extended Locations o 16
2.3 Facings and Closed/Opens Cells 17
2.4 Character Skills 19
2.5 SpellRunes e e e e e e e 20
2.6 Inventory Ordinals e 20
2.7 ObjectTypesand Masks, 21
2.8 Monster Types o o i i i e e e e e e 22
2.9 WeaponTypes o i i i i e e e e e 22
2.10Clothing Types o o i i i e e e e e e e e e e e e e e e e 23
2.11Miscellaneous Types o o i i i i e e e e e e e 24
2.12Built-in Sounds Lo Lo e 26
3.1 Spell Filter Parameters 28
3.2 Skill Adjust Filter Parameters 29
3.3 Skill AdjustReasons L Lo e 30
3.4 Party Attack Filter Messageso oo 30
3.5 Attack DataType L e 32
3.6 A L e e e e 34
3.7 Viewing Filter Parameters L0000 36
3.8 Object Description Text 37

112

LIST OF TABLES 113

3.9 Cursor Filter Parameters 0. 37
3.10Cursor Filter Types o o i i e e e e e 38
3.11Attack Option Name Parameters 39
3.12Built-in Attack Types o e 40
3.13Equip Filter Messages o e 40
3.14Equip Filter Parameters 41
3.15Monster Attack Parameterso Lo oL 42
3.16 Monster Moving Filter Messages 45
3.17Monster Moving Parameters 46
3.18 Monster Delete Parameters 0. 47
3.19Monster Delete Type o o i e e e e 47
3.20Sound Filter Parameterso 000 48
3.21Missile Encounter Parameters L. 49
3.22Missile Encounter Types e 49
4.1 ObjectCharges o i i i i it et e e e e 70
4.2 Cloud Types o i i i i i e e e e e e e e 77
4.3 Monster Variables L e 79
4.4 Party ManagementResults 0L, 90
4.5 Party Variables e 91
4.6 Character Variables 92
5.1 Number of switch combinations 104
5.2 = e e e 105
5.3 Cell Location Format, 105
A.1 Pressure Pad Types i 109

A2 — e 109

Nomenclature

filter a DSA to modify built-in engine behavior
Fingerprint Blah

ordinal a specified number in a series

114

	Introduction
	Target Audience
	Overview

	Basic concepts
	Instances
	States
	Messages
	Message Type

	Memory
	Parameters
	Stack
	Static Array
	Global Variables
	Temporary Variables

	Cells
	Enumerations and Bit Encoding
	Cell Locations
	Locations
	Manhattan Distance
	Facing and Positions
	Position Masks

	Character Related
	Character Numbers
	Character Fingerprint
	Skills
	Spells
	Inventory Slots

	Object
	Monster Types
	Item Types
	Foo Type

	Sounds

	Filters
	Spell Filters
	Skill Adjust Filter
	Party Attack Filter
	Feeding Filter
	Character Death Filter
	Viewing Filter
	Cursor Filter
	Attack Option Name Filter
	Equip Filter
	Party Move Filter
	Monster Attack Filter
	Monster Movement Filter
	Monster Delete Filter
	Sound Filter
	Missile Encounter Filter
	Indirect Actions

	Instruction Reference
	Terminology
	Expressions
	Foo
	Interpreting Instruction Descriptions
	General
	NOP
	Load
	Load DSA Location
	Set State
	Random Number
	Read Time
	Global Information Get
	Override
	DSA Query

	Message Passing
	Standard Message
	Standard Message (Indirect)
	Message

	Stack Manipulation
	Drop
	Drop 2
	Swap
	Over
	Duplicate
	Duplicate 2
	Pick
	Pick 2
	Poke
	Roll
	Unroll
	Rotate
	Unrotate

	Array Access
	Array Get
	Array Set

	Parameter Access
	Parameter Set
	Parameter Get

	Global Variables
	Global Get
	Global Set

	Temporary Variables
	Variable Get
	Variable Set

	Binary Operators
	Arithmetic
	Addition
	Multiplication
	Division
	Remainder

	Bitwise
	Shift Right Arithmetic
	Shift Left
	Bitwise AND
	Bitwise OR
	Exclusive OR

	Logical
	Logical AND
	Logical OR

	Unary Operators
	Negate
	Logical NOT
	Decrement
	Increment
	Ones Complement
	Bit Count

	Comparison Operators
	Equals
	Not Equals
	Signed Less-Than
	Unsigned Less-Than

	Flow Control
	Explicit Branch
	Explicit Subroutine
	Branch
	Call Subroutine
	Multi-Target
	Case
	If Then Else

	Object
	Charges
	Charges Get
	Charges Set

	Broken
	Broken Get
	Broken Set

	Cursed
	Cursed Get
	Cursed Set

	Poisoned
	Poisoned Get
	Poisoned Set

	Sub Types
	Subtype Get
	Subtype Set

	Object Type
	Fetch
	Object Spawn
	&OBJECTID
	Object Move
	Cloud Create
	Missiles
	Missile Info Get
	Missile Info Set

	Monster
	Monster Delete
	Monster Insert
	Monster Variables
	Monster Variable Get
	Monster Variable Set

	Monster Possession
	Monster Movement Filter
	Monster Block Move
	Monster Location and Distance

	Cells
	Cell Flags
	Cell Flag Types
	Cell Flags Get
	Cell Flags Set

	Extended Cell Flags
	Extended Cell Flags Get
	Extended Cell Flags Set

	Teleporter Copy
	Generator Delay
	Generator Delay Set
	Generator Delay Get

	Neighbors Inspect
	Cell Inspect
	Location Decode
	&THROW

	Party and Characters
	&ISCARRIED
	Party Management
	Party Distance
	Party Variables
	Party Variable Get

	Character Variables
	Character Variables Get
	Character Variable Set

	Character Location
	Character Name
	Character Possessions
	Character Skills
	Skill Adjustement Parameters
	Give XP
	Level of Mastery

	&WHOHASTALENT
	Poison
	Teleport Party
	Level XP Multiplier

	Effects
	Color Palette
	Sound Play
	Text
	Display Cell Text
	Display FOO text
	Clear Text
	Text Get
	Global Text
	Describe Object

	Savegame Control

	Indirect
	&%INDIRECT
	Parameters Get
	Parameters Set
	Delay
	Cast
	x

	Explanations
	Basics
	Understanding Integers
	Switches and Bits
	Integers
	Negative integers
	Hexidecimal numbers
	Enumerations
	Bit flags

	Instances

	Memory
	Parameters
	Manipulating the Stack

	Messages
	Bitwise Operations
	Instruction Reference
	Understanding Expressions

	Flow Control

	Foo
	ASDF

